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PREFACE TO SECOND EDITION

S
INCE the publication ofthe first edition of this book, the most impor-

tant new developments in the theory ofatomic collisions have been its

applications to nuclear physics. Although no new techniques have been

introduced for dealing with extra-nuclear collision phenomena, in this

field too, much progress has been made. The stage has now been reached

where it is necessary in such branches of research as astrophysics, solar

physics, and in the physics of the upper atmosphere, to have available

reliable information on the rates of various colhsion processes. It was

felt that a review of the available information about these processes,

together with an up-to-date discussion of nuclear collisions, would lead

to a book of undue length. The plan has therefore been followed in this

second edition of describing primarily the new work on nuclear collisions

and generally bringing the theory up to date. More detail has been

given about relativistic scattering in which radiation is not involved

and, to clarify certain arguments, some discussion has been given of the

validity of different approximations and some hints on numerical pro-

cedure. No attempt has been made to enlarge the discussion of applica-

tions of the technique to atomic, as against nuclear, collisions, except

where a further direct test of some aspect of the theory has become

possible. The chapter on collisions of electrons with molecules has been

omitted.

To meet the growing need for an account of the information, available

from both experimental and theoretical sources, about the rates of

various atomic, as distinct from nuclear, collision processes, a second

book, ‘Electronic and Ionic Impact Phenomena’, which is not primarily

theoretical, and includes a description of experimental methods, is in

preparation. It is being written, in collaboration with Dr. E. H. S.

Burhop, by the one of us (H. S. W. M.) who has been largely responsible

for the preparation of this second edition. References to the new book

are included in this edition whenever it is necessary to call attention to

the existence of a body of information on a particular aspect of the

subject.

In preparing this edition we are much indebted to Professor R. E.

Peierls, F.R.S., for providing us with a copy of his joint paper with

Professors N. Bohr and G. Placzek in advance of publication and for

reading certain parts of the manuscript, to Dr. E. H. S. Burhop for pro-

viding criticism of much of the manuscript and for great assistance in

checking the proofs, to Dr. R. A. Buckingham for contributing to



vi PBEFACE TO SECOND EDITION

Chapter XV, to Mr. D. R. Bates for comments on Chapter XIII, and

to Dr. L. Hulthen for communicating to us in advance of publication

information about his methods of calculating phase-shifts. Our thanks

are also due to Mr. Elton, Mr. A. Fundaminsky, Dr. Tsi-Ming Hu, Mr.

F. C. Ledsham, Dr. Leech, and Dr. S. N. Milford for checking formulae

either in manuscript or in proof, and to Miss K. Blunt for assistance in

the preparation and checking of tables.

N. F. M.

BRISTOL H. S. W. M.

LONDON

January 1949

PREFACE TO FIRST EDITION

OUR aim in this book has been to give as complete an account as

possible of the application of classical and quantum mechanics

to collisions between atoms, electrons, and ions. We have paid special

attention to collisions between particles moving with relatively small

velocities, partly because most text-books treat onlj^ the scattering of

fast particles, and partly because we hope that the theory will soon

be applied to problems of chemical kinetics. We have not dealt with

phenomena where one of the colliding particles is a light quantum, or

with problems involving a discussion of nuclear structure.

We would like to express our thanks to Dr. C. B. 0. Mohr, who
has helped us in the preparation of the figures, and who has read

much of the book in manuscript, and to Dr. Weisskopf, for assistance

in proof-reading.

N. F. M.

CAMBRIDGE H, S. W. M,
September 1933
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INTRODUCTION

Many of the most important advances in physics have been due to

the study of the behaviour of beams of charged particles. The re-

searches of J. J. Thomson and others on cathode rays were responsible

for the discovery of the electron and the measurement of the ratio

of its charge to its mass. Similar methods enabled Kaufmann to

demonstrate the relativistic variation of mass with velocity, and in the

last decade the development of the method in the hands of Aston has

led to our present knowledge of mass defects.

These experiments have yielded information about the nature of the

charged particles themselves. Once their nature was understood, beams

of charged particles have provided a most useful tool for the investiga-

tion of atomic structure. The most precise information can be obtained

by bombarding matter, usually in the form of gas or a thin foil, under

conditions such that very few of the incident particles make an effective

collision with more than one atom. The conditions are then said to be

such as to give ‘single scattering’. One may then examine the energy

and angular distribution of the scattered particles, or the radiation

emitted by the atom.

The earliest experiment of this type was that of Rutherford, who
bombarded a thin metal foil with a beam of a-particles. From the

relation between the number of scattered particles and the thickness

of the foil, he was able to show that the conditions were such as to

give single scattering, and hence, from the variation of scattering with

angle, he was led to postulate the heavy nucleus in the centre of the

atom. Later developments have led to the discovery of anomalous

scattering and of artificial disintegration, and have provided one of the

most valuable methods of investigation of the nucleus.

Experiments in which atoms are bombarded by electrons of known

energy have, in the hands of Franck, Hertz, and other workers, pro-

vided the most direct proof of the existence of the stationary states

postulated by Bohr in 1913. It has been possible to measure the mini-

mum energy required to excite the atom to a state from which it can

radiate, and also to investigate the velocity distribution of the electrons

after collision, and to show that scattered electrons have either lost no

energy, or have lost more than the first resonance potential.

In these experiments the interest is concentrated more on the atom

than on the colliding particle. It is the atom which has a planetary
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structure, exists in stationary states, and radiates quanta of energy.

Assuming the truth of these facts, the colliding particle behaves very

much as one might expect, and provides a valuable tool for their

investigation. Theoretical work has therefore, until very recently, been

chiefly concerned with the stationary atomic states. This is also due

to the accuracy and extent of the information about the energies of

these states provided by spectroscopic methods. Early attempts were,

however, made to obtain theoretical expressions for the probability that

a colliding particle should lose energy. Thus in 1911 Bohr gave a semi-

classical theory of the loss of energy of electrons and a-j^articles in

passing through matter, from which he obtained an expression for the

stopping-power which was qualitatively in agreement with experiment.

Kramers in 1 923 gave a theory of the emission of radiation by a particle

on impact with a solid target. These formulae, while very useful as

a basis with which to compare experimental results, admittedly did not

rest on any secure theoretical basis.

It is one of the triumphs of the New Quantum Theory that it is able

to answer questions of probability and intensity in collision problems

in an unambiguous way. The first hint that classical mechanics, supple-

mented by quantum conditions, was inadequate in this field came from

the work of Ramsauer and others, who showed that the cross-section of

certain atoms in colhsions with slow electrons was many times less than

the gas-kinetic cross-section. But the great mass of experimental

evidence is due to work carried out after the discovery of the new
theory, and to some extent stimulated by it. Thus the work of Davisson

and Germer and of G. P. Thomson and many others on the diffraction

of electrons by crystals gives clear evidence of the wave nature of the

electron. There is much experimental material concerned with the dif-

fraction of electrons by gas atoms and molecules, most of which can

be accounted for satisfactorily. There is also some evidence for the

Pauli exclusion principle to be derived from collision phenomena.

The New Theory, besides accounting for these new and somewhat

startling phenomena, is able to provide formulae for the stopping-power

of various materials for a- and jS-particles, the gas-kinetic cross-section

of atoms, and many other quantities for which classical estimates have

already been made. The formulae obtained from the Quantum Theory

are usually in better agreement with the experiments than the older

formulae, and such discrepancies as remain are probably due to the

approximate mathematical methods which must be used to solve

the equations, rather than to a defect in the theory itself (except in
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the realm of high energy phenomena, where the theory is known to

break down).

In this book, after an introductory chapter discussing the methods

of the New Quantum Theory, we shall apply these methods to problems

involving collisions between material particles, and show the agreement

with experiment which has been obtained.





I

THE WAVE EQUATION

1. The wave function

In this chapter we shall state the laws of wave mechanics, not in their

most general form, apphcable to any system however comphcated, but

in a simple way which can be applied only to the problem of the motion

of a single charged particle in a field of force. The analysis of this

chapter may also be applied to experiments in which the behaviour

of a beam of electrons is investigated, provided that the interaction

between the various electrons of the beam may be neglected, so that

each electron behaves as though the other electrons were not there.

In principle, this will of course be the case only if the charge density

in the beam is vanishingly small.

We shall state the laws of wave mechanics with a view to their

application to problems involving the motion of a free electron, and,

since such experiments are usually carried out with beams of electrons,

we shall first state the laws that describe the behaviour of steady beams.

These laws may be stated as follows: When we observe an electron,

we observe a particle (a flash on a screen, a kick of a Geiger counter).

If, however, we wish to know how many electrons there are likely to

be in any volume, or how many cross unit area per unit time at a given

point, we must assume the presence of a wave (the de Broglie wave).

The amphtude and phase of this wave at a given point and given time

is specified by a (complex) function of positionf ^) (the wave
function). This ‘wave’ makes its presence known to us through the

following property: if dr is an element of volume situated at the point

(x,y ,z), then the probability that at the instant t an electron is in the

volume-element dr is

The average number of electrons within a volume r large enough to

contain many electrons will then be

J
\ili{x,y,z; t)\^dT,

the integration being throughout the volume r. It is to be emphasized

that the probabilities refer to the results of possible experiments; \ijj\^dr

gives the probability that an electron would be found in the volume
dr, if an experiment were performed to look for it.

t {x, y, z) are Cartesian coordinates of position with respect to some axes fixed in

space ; t is the time coordinate.

86B5.67 »



2 THE WAVE EQtlATIOaN I, § 1

In equation (18) we give a formula for the number of electrons

crossing unit area per unit time.

We must now show how to calculate the wave function 0 that will

describe correctly the behaviour of a beam of electrons in any given

experiment; the method naturally depends on the kind of experiment

that we have in mind. We may distinguish between two types: those

in which we deal with a steady stream of electrons—e.g. the cathode

rays in a highly evacuated discharge tube—and those in which we deal

with a stream whose intensity varies with the time. The behaviour of

a discharge tube when the current is first turned on presents a problem

of the second type (cf. § 8).

2. Wave mechanics of steady beams of electrons

We shall first discuss the behaviour of stead}^ streams of electrons.

We shall limit ourselves in this chapter to the formulation of a non-

relativistic theory, which will be valid only if the velocity of the

electrons is small compared with that of light. The path of a beam of

electrons is determined by the experimental conditions. If we wish to

calculate the path of a beam of electrons, we must calculate 0; \x(j\^ will

then be equal to the number of electrons per unit volume at any point.

Thus, given the experimental conditions, it must be possible to calculate

1^1 at every point.

Suppose, for instance, that a beam of electrons of known energy is

passed through a slit 8 into a highly evacuated enclosure, where the

electrons describe a curved path due to an electric field. Then it must

be possible, from the experimental conditions, to calculate the function

|^|2, and, if our rules for calculating are correct, we must find

that 1^1^ vanishes outside the region where the electrons are observed,

and is equal to the observed electron density inside it.

We must first know the wave-length of the waves under these con-

ditions. On this point we have direct experimental evidence;*)* the

observations on the diffraction of electrons by crystals show that, if

electrons are accelerated by a known potential, the wave-length A of

the associated waves is given by the formula

A = A/V(2mW), (1)

where W is the kinetic energy of each electron. The same formula was

predicted by de Broglie in 1926 from theoretical considerations. J

W here is a directly measurable quantity, —WIe being the potential

t Sec, for instance, G. P. Thomson, The Wave Mechanics of Free Electrons, Chap. IV.

J See, for instance, Frenkel, Wave Mechanics, p. 19.
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drop between the source of the electrons—^where they may be con-

sidered approximately at rest—and the point where the wave-length

is measured. In the experiment considered above, if is the kinetic

energy of the electrons when they pass the slit S, then W at any other

point is given by

where V(x,'i/,z) is the potential energy of an electron at the point

(x,yyZ)j so that V == —e^{x,y,z), where is the electrostatic potential

difference between S and the point (x, y, z). Thus the wave-length in an

experiment of this type is given at every point of space. This argument

is not valid if the fields are so strong that W changes appreciably in

a distance comparable with a wave-length 10“® cm.). Such fields

are only found within the atom.

The wave-length, in a given experiment, is thus known at every

point. In order to calculate the wave function, we must know also

the so-called ‘boundary conditions’. These depend entirely upon the

experiment under consideration; in the experiment referred to above,

the ‘boundary conditions’ consist in a knowledge of the state of the

wave over the surface of the slit—i.e. the wave amplitude, wave-length,

and phase. These are clearly determined by the experimental condi-

tions, except for the phase, which can be given any arbitrary value,

since it does not affect moreover, it is clear from analogies with

other kinds of wave motion that, given these conditions, the wave is

determined at all points of space.

In order to calculate i// we must know also the wave equation that it

satisfies. Any monochromatic train ofwaves in a homogeneous isotropic

medium must satisfy the equation

where A is the wave-length. If the medium is not homogeneous, so that

A is a function of position, the amplitude of a wave train will satisfy

the same equation approximately, provided that the variation in A is

small in a distance comparable with A. Putting in the experimental

value of A, namely, _ hl{2m{W,- V)}K

we have for the wave equation

STT^m
-iWo-V)i, = 0,

(
2

)

whioh is the wave equation of SchrOdinger.
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The condition given above, that A shall not vary much in a distance

comparable with A itself, becomes, expressed in terms of F,

|gradF|A < W, (3)

This will clearly be satisfied for all macroscopic fields. Subject to (3), we

can show that the behaviour of a beam of electrons as predicted from

SchrOdinger’s equation is the same as that predicted by Newtonian

mechanics, as follows:

If a beam of waves moves in a medium of varying refractive index

fjL, the path of the beam is curved; the radius of curvature B at any

point is given by the well-known formula

R
Now fi is the ratio of the wave-length at the point considered to the

wave-length in free space; so that in our case

M = [Wol{Wo-V)]K

and therefore ^ — —— (^)B dn /

But, according to Newtonian mechanics, the beam will be bent in such

a way that m multiplied by the acceleration v^jB normal to path of

the electrons will be equal to the component —dVjdn of the external

force in this direction. Substituting

mv^ = 2(Wo-V)

we obtain (4). Thus the two systems of mechanics give the same results

in this case.

We see therefore that wave mechanics will only give different results

from classical mechanics when it is used to describe the behaviour of

electrons in the strong fields that exist inside an atom. Before we can

apply Schr5dinger’s equation (2) to such problems, there are two points

that we must consider. Firstly, the quantity V[x^y,z)y the potential

energy of an electron at the point [x, y, z), is no longer a quantity which

can be determined experimentally. According to the uncertainty prin-

ciple, if the electron is observed to be at the point (Xyy,z), its velocity

is unknown; and hence the change V{x^ y, z) in the kinetic energy as the

electron travels from field-free space to (x^y^z) is not an observable

quantity. Thus the only meaning that we can give to F is that it is

a function which, when inserted in Schr5dinger’s equation, gives results

in agreement with experiment. Of course, when we wish to calculate

the behaviour of an electron in the field of a nucleus of charge our
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first thought will be to use the Coulomb form of the potential

= ~-E€lr,

because this is the form of the potential energy of one macroscopic

charged body in the field of another; but this procedure is only justified

by the fact that it gives results in agreement with experiment; we have

no a priori knowledge that this is the correct form, because V[r) is not

an experimentally measurable quantity.

The second point concerns the equation (2), and whether, whatever

the form of F, it is the correct equation to use for atomic fields. We
have seen that the equation (2), together with the probability inter-

pretation of ijj (provided that they are applied to the behaviour of

electrons in slowly varying fields), are deductions from the experiments

on the diffraction of electrons by crystals. It is a new assumption that

this equation may be applied to atomic fields. This assumption is only

justified, naturally, if it gives results in agreement with experiment.

The simplest test to which we can put the theory is to see whether it

predicts the conservation of charge—^i.e. whether it predicts that the

average number of electrons going into any closed volume is equal to

the number coming out of it. We shall see that this is so (§ 7).

Schr5dinger’s wave equation is therefore adopted because it is the

simplest wave equation which gives:

(1) the de Broglie wave-length for slowly varying fields;

(2) the conservation of charge for all fields.

3. Examples of wave functions describing steady beams of

electrons. Infinite plane wave

A beam of electrons of infinite breadth travelHng from left to right

along the s-axis is represented by the wave functionf

xjj
— Aexp27ri{2;/A— rf), (6)

where A is the wave-length, given by

A = hj^{2Wm)

(IF = kinetic energy), and v is the frequency, given by (cf. § 8)

r = W/h.

The number of electrons per unit volume is AA*, and the number per

unit time crossing unit area perpendicular to the 2;-axis is AA'^v, where

V is given by \mv^ = W.

t It is often convenient to drop the time factor and to write only Aexp(2;rt2/A).
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4. Beam of electrons in field -free space

We suppose that the beam is formed by passing the electrons through

a circular hole, of radius a, in a screen. Let us choose axes with the

origin at the centre of the hole, and the axes of x and y in the plane

of the screen. The direction of motion of the electrons will then be

along the axis. We have to form our wave function by superimposing

plane waves of wave-length A, all travelling in directions very nearly

parallel to the 2-axis, in such a way that, in the xy-plane, xp will vanish

outside the circular hole. Now the equation of a plane wave travelling

in the direction given by the polar anglesf a, j8 is

r ,A exp - [z cos a+x sin a cosp+y sin a sin j8)

It follows that our wave function iff must be of the form

iff = JJ
^(a,^)expj^^^(2COsa+a:sinaco8j8+2/sinasinjS}j docdp, (6)

where A{oc,p) must be chosen in such a way that ift vanishes in the

a:2/-plane, outside the circular aperture. If we transform to spherical

polar coordinates (r, 0, (6) becomes

•A = JJ
A{oc,p)exp^^r{cos0cosa+sin0sinacos(^—

j8)}j
dodp.

It is clear from the symmetry of the problem that is a function of

oc only; carrying out the ^ integration we obtain

iTT

iff ~ 27t

j
A(oc) doc exp|?^cos 9 cos aj 0 sin aj. (7)

t i.e. if Z, m, n are the direction cosines,

Z ~ sin a cos jS, m — sin a sin n = cos a.
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To find ^(a) we use the fact that ift is given equal to some function /(r),

say, on the a;?/-plane, i.e. on the plane 6 = we have then

f{r) = 27t

0

From this integral equation A{(x) must be determined.

The simplest convenient expression for f{r) is

f{r) — B exp{—r^la^).

(
8

)

(
9

)

In practice f{r) would be more complicated than this, being constant

within the hole (r < a), and falling to zero in some irregular waj^^ at

the boundary. We adopt the simplified form (9) because it makes

possible the exact solution of (8). If we put

A{ol) ~ sin a cos a

with a ^ A/tt®, Ctto^ = jB,

then equation (8) is satisfiedf if we replace the upper limit of integra-

tion by 00
,
a step which may easily be justified since a 1.

We have now to integrate (7). Since the whole value of the integral

comes from small a, we replace (7) by

0 27tC

00

J
exp

27rir cos 6

which is equal to

^(1 ,

Trircos^l-i F 77V . „J1
,
Trircos^l-^l /2TTiz\

’’®(55+"a— )
J“P(—]•

which is the required wave function. The number of particles per unit

volume is which, for large r, tends to

((7A/r)2exp(--2sin20/a2),

which is equal to

|0|2 /-w (7TBa^/Xr)^exp{—2Tr^a^BmWIX^).

The diffraction of the beam is well shown.

(11)

5. One-dimensional problems

Let us suppose that a beam of electrons, such as the beam discussed in

the last section, moving along the 2;-axis, enters a field which varies only

t Cf. Watson, Theory of Beseel Ftmctions, p. 393. We use the fortntila
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in the z-direction, so that the potential energy of an electron in this field

is of the form F(z). It is required to calculate the behaviour ofthe beam.

In such problems the variation of 0 with x,y is not relevant; for

purposes of calculation it is therefore convenient to take the incident

beam of infinite extent, so that it may be represented by an infinite

plane wave. The complete wave function ijs will then be a function of

z only, and will therefore satisfy the wave equation

g+ = (12)

where W is the kinetic energy of each electron at the point where F is

considered zero.

As an examplef we shall investigate the behaviour of a beam of

electrons impinging on a potential jump, that is to say, a field such that

F = 0 {z< 0),

F - C7 (^ > 0).

We shall suppose that U <^W, We represent the incident wave, falling

on the potential jump, by

A exp(ii;z) (z < 0),

where k = 27rmt;/A = 27T{2mW)^/h.

This represents a beam of electrons moving with velocity v, and such

that AA *v cross unit area per imit time. For the reflected beam we take

jBexp(— ifcz) (z < 0),

and for the transmitted beam

Cexp{ik'z) (z > 0),

where k' = 27rmv'lh — 27r[2m{W—U)]^lh,

Thus for our complete wave function we have

if/
— Aex-p{ikz)+Bex]^{—ikz) (z < 0),

^ == Cex]^{ik'z) (z > 0).

We now put in the boundary conditions satisfied by the wave func-

tion at z = 0. These are that ^ and dtp/dz must be continuous. We
have therefore A+B== C,

k{A-B) = Ck\

t A discussion of the passage of electrons aoross potential barriers is given in various

text-books. Cf. Mott and Sneddon, Wave Mechanics and Us Application, Chap. I;

Frenkel, Wcwe Mechanics, § 16 ; Condon and Morse, Quantum Mechanics, pp. 222 et seq.

;

also in Condon, Rev, Mod, Rhys, 3 (1931), 43. A summary of the application of these

ideas to electron emission from metals is given by Nordheim, Phys, ZeUs, 30 (1929), 177.
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Solving, we obtain £ ^ A{k-¥)j{k+k%

C = 2Akl(k+k').

The number of particles crossing unit area per unit time in the reflected

AA*v{k-k')^j{k+k')\

and in the transmitted beam

AA*vpkYI(k+k')\

Remembering that kjk' = v/v', we see that the fraction of the total

number of particles reflected is

and the fraction transmitted

4:Vv'l(v-\-v')^,

We see that the two proportions add up to unity, so that the wave

function predicts that electrons are conserved. This is a particular case

of a general law proved below in § 7.

6. Solution of the wave equation for an electron in a slowly

varying fieldf

If the potential energy V(z) does not vary appreciably in a distance

comparable with the wave-length h/.^{2m{W—V)}, one may obtain an

approximate solution of the wave equation as follows. We write

=/(*),

and assume f(z) positive in the range of z considered. Schrodinger's

equation becomes lo
/

= 0. (
13

)

We write 0 = Ae^P; (14)

substituting into (13) we obtain

A"+2iA'p'+i^''A-P'^A+fA = 0, (15)

where the dashes denote differentiation with respect to z. We put

=/(^),

which gives ^ ~ j
Since f is nearly a constant in a range of z long compared with the

wave-length, this gives for jS in such a range,

/Iz-fconst.

t This method is due to Jeffreys, Proc. Lond. Math. Soc. Ser. 2, 23, Part S.
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It follows from (14) that ^ to a first approximation is constant in

such a range, and hence that

A" <Af.

Hence in (15) we may neglect A'" in comparison with A'P' [we cannot

neglect A'^' in comparison with A^" because j8" is itself small]. We
thus obtain from (15)

2A'p'+p"A = 0
,

and hence A == const. [f{z)]~^.

Thus our approximate solution is

•A = [/(2)Uexpj±i
J

[/(z)]» dz^. (16)

The number N of electrons crossing unit area per unit time is equal

to 10
1

2 multiplied by the velocity of the electrons. Now

= [mr^
and the velocity of the electrons is [2(TF~F)/m]^, which is proportional

to [f{z)]^. Thus N is the same for all as it should be.

Similarly, it may be shown that, if/{2:) is negative, then, if we write

the approximate solutions of the wave equation ( 1 3) are

[^(2)]-iexpjT J
[gr(2 )]i d^.

In many problems f{z) has a zero such that

f{z) >0 (2 > 2o)

f{z) <0 (2 < 2o),

and we require to know the particular solution which decreases as 2:

becomes less than Zq, It has been shown by Jeffreys! that, iff'{zQ) ^ 0,

then in the range z > Zq this solution is

=/-isinbw+
I
[/(z)]*dz]. (17)

7. Formulae for the current ; the conservation of charge

We have postulated as an axiom that the quantity 00* shall be equal

to the number of electrons per unit volume in the beam of electrons

described by the wave function 0, or more exactly, that 00* dr m equal

t Loc. cit.
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to the probability that an electron will be found in the volume-element

dr. We can obtain a similar formula for the current, or number of

electrons crossing a given area per unit time. More exactly, we require

a vector j, at all points of space, such that (i.dS) dt is the probability

that an electron will cross an element dS of area in the time dt. The
required formula for j is

Ji

j grad grad (18)

We shall show that this formula gives j correctly in all cases in which

j could be measured.

In a region in which V is constant or zero, and in which there is a

single stream of electrons moving in the direction n, the wave function

will be of the form
^ _ « exp{2^mt;n . r/^.}

and j equal to v\a\^n, which is clearly given by (18).

To measure j in general, one would place a collector in the path of

the electrons, and measure the charge falling on it per unit time. Such

a procedure measures the average value of j over a region large com-

pared with the wave-length, and this is the only thing that can be deter-

mined by direct experiment. If we suppose that V and therefore A are

constant in this region, then the wave function must be of the form

ijj = 2 ^s^xp{27rimvn,,.r/A},

where the are unit vectors, and the constants. This wave function

represents streams of electrons superimposed on one another. The fact

that according to the wave mechanics such streams should interfere

will not affect the number of electrons falling on the collector, because

the collector is large compared to the wave-length. If the area of the

collector is A, and if it is normal to the direction n, the number of

electrons falling on it per unit time is

(
19

)

According to the formula (18) this number should be

I
j . n ci-S

over the surface of A, This is easily seen to lead to the formula (19),

since the cross terms of the type

af exp{27nmt;( n^) . Tjh}

become zero when averaged over an area large compared with the

wave-length.
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If the beams come from different sources, must be taken to have

the form agexp(i^^), where
(f>g

is an arbitrary phase having no relation

to the corresponding phase To obtain the current one must average

(18) for aU
<f>^,

the cross terms will then vanish.

We shall refer to the vector j as the current vector, though it is only

the averaged value of j that can be observed directly.

It may easily be shown from the wave equation that charge is con-

served—^i.e. that the average number of electrons moving into a volume

is, in a steady beam, equal to the number moving out.f This will be

so if divj vanishes. Now from (18) we have

divj =
4t7Tim

But since both 0 and 0* satisfy Schrodinger’s equation, it follows that

and that is equal to the same expression. Thus we see that

divj is zero.

It is of interest to note that the absorption of particles from a beam may be

represented by the introduction of a negative imaginary potential energy in the

Schrodinger equation. If the particles are absorbed at a rate ap per unit volume

per second where p is the density, then, in a steady state,

divj-fap — 0. (19 a)

Writing, in (12), V = IJ— ili,

where Vr.Vi are real functions of r, then

^*VV= -

= -^•^(TF-F,-iFa<A*.

80 divj =

Comparing with (19 a) we have oc — ^TrVJh,

Use will be made of this result in Chap. VIII, § 8.31.

8. Problems in which varies with the time

Let us consider a highly evacuated discharge tube, in which a beam
of electrons is projected against a screen in which there is an aperture

covered by a shutter. Suppose that the aperture is suddenly opened;

then, a short time t afterwards, there would be a stream of electrons

coming out of the aperture, and extending a distance vt from the hole.

t Compare Sommerfeld, Wave Mechanics

^

p. 89.
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V is what we call the Velocity’ of the electrons, and is connected with

the energy W due to the field that has accelerated them by the formula

W =
From the point of view of the classical mechanics this is trivial; how-

ever, according to our fundamental assumption, we ought to be able

to predict this result by postulating the presence of a wave and then

making the assumption that is equal to the number of electrons

per unit volume. Now, from the wave point of view, we have a steady

wave train falling on the screen, until the shutter is opened, when a

beam passes out into space; the velocity with which the front of the

beam advances is the group velocity of the waves.

Now the group velocity in any wave-motion is equal to dvjdN, where

V is the frequency, and N the wave number, equal to the reciprocal of

the wave-length A. In order that the wave description may be in agree-

ment with experiment (that is, in this case, with the classical theory),

this velocity must be equal to the classical velocity of the electrons,

namely, v. Thus we must have

Expressing v in terms of N, we have

We may integrate this equation; we obtain

V = const.

= const.

The formula hv = E,

where E is the relativistic expression for the energy of a particle (in-

cluding the rest-mass), namely,

E =
was deduced by de Broglie| from considerations depending on the prin-

ciple of relativity. If vjc is small compared with unity, this reduces to

hv =
which gives a value to the constant. However, the value of this con-

stant does not affect any experimental result, and it is convenient to

put it equal to zero in non-relativistic problems.

t de Broglie, Ann. de Physique^ 10 (1926), 22.
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The wave equation for a general, non-monochromatic wave distur-

bance is

-VV-F0. (20)
Ji di/j

27^^ dt

*2

%iT^m

This equation may most easily be obtained as follows: the equation

satisfied by the wave function describing a stream of electrons of energy

W is

v‘V- ~P~ {W~V)iIj = 0.
(
21

)

This wave function will be of the form

^ =^f{x,i/,z)exp(—2TTiWtlh), (22)

as we have just shown. Now the equation which we require must not

contain W; from (22) we see that

Wi/j= ^ h difj

and hence, from (21), it follows that equation (20) is satisfied by wave

functions describing electrons all with the same energy—i.e. by wave

functions of the type (22). But the most general wave function must

be made up by superimposing such wave functions; therefore the most

general wave function will satisfy (20).

From the wave equation (20) it may easily be shown that charge is

conserved. If we denote by p the quantity then
J p dr integrated

over any volume will be equal to the probability that an electron is in

the volume.
J j . dS will be equal to the probability per unit time that

an electron moves out of the volume. We must therefore have

Jj.dS==0. (23)

This will be the case if — -j-divj — 0. (24)
dt

(24) may easily be proved from the wave equation (20), using the

definition (18) of j. For proof cf. Sommerfeld, Wave Mechanics, p. 89.

9. Wave packets

Let us suppose that a beam of electrons is fired at a screen in which

there is an aperture, which is initially closed by some kind of shutter,

and is then opened for a short time, and then closed again. If this

experiment were carried out, a cloud of electrons would pass through

the aperture and travel out into space. One could say that a region,

in which the electron density is different from zero, would be travelling
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through space. The shorter the time during which the shutter is open,

the smaller will this region be.

To describe this phenomenon in the language of wave mechanics, we
must picture a train of de Broglie waves faUing on the screen, and,

when the shutter is opened, a ‘wave packet’ or ‘wave group’ passing

through. The square of the amplitude of the wave function gives us,

as usual, the probable electron density. The wave group as a whole

will travel forward with the group velocity of the de Broglie waves,

and this, as we have seen, is equal to the classical velocity of the

electrons that they represent. The wave mechanics, therefore, makes

the same predictions as the classical mechanics.

If y, z, t) is the wave function at any point in the wave packet,

then the number n, definedf by the integral (over all space)

^ ~ J//
is equal to the probable number of electrons that have passed through

the shutter. If the original electron beam were sufficiently weak, or if

the shutter were only open for a very short time, then this number

might be of order of magnitude unity. It must be remembered, of

course, that if n were actually equal to unity, it would not mean that

just one electron would pass through every time. It would mean that,

if the experiment were repeated a very large number p times, the total

number of electrons passing through would be pii, even though in indi-

vidual experiments the number would be zero, one, two, and so on.

In discussing the behaviour of wave packets, it is usual to normalize

the wave function in such a way that n is equal to unity.

The study ofwave packets is of little use in enabling one to predict the

results of real experiments; in practically all experiments with free elec-

trons a continuous stream is used. Wave packets are, however, instructive

in enabling one to understand the ideas of the wave mechanics, because

they have a certain rather superficial resemblance to the particles of the

classical theory. For instance, if one can show that awave packet will fol-

low the path ofthe classical particle, onemaydeduce that wave mechanics
and classical mechanics will give the same result in a given problem.

9.1. One-dimensional motion ofa wave packet in a homogeneous medium

In any kind of wave-motion there is a relation between the frequency

V and the wave number N, For de Broglie waves, in the non-relativistic

theory, this relation is ^ _ \hN^jm,

t n is a constant with respect to the time ; cf. § 8.
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We shall assume in this paragraph a quite general relationship,

V = v{N).

The most general possible wave disturbance is given by

•f 00

t/i = j
a{N) dN exp[27rt(i\rz— v<)],

~ 00

where a(iV’) is an arbitrary complex function. This wave disturbance

is obtained by superimposing an infinite number of plane waves, with

arbitrary amplitudes and phases. We can choose a(N) so that t/j has

any desired form at time ^ == 0, by means of Fourier's integral theorem.

We shall take for our wave packet at time ^ = 0

i/j = Cexp{27riNQZ~z^l(T^), (25)

The error function form for the amplitude is chosen because all the

subsequent integrations can then be carried out in terms of known

functions. The wave packet is thus initially in the neighbourhood of

the origin, has wave-number and breadth of order of magnitude 2a.

It is easily seen (and will be proved below) that

a{N) = 07r*aexp[~(A^--i\ro)Va2]. (26)

To find the form of the wave packet at any subsequent time, we
have therefore to evaluate the integral

CJO

= J
C',Tiaexp[27n(iV^z-./<)-(i\r-iVo)W] dN. (27)

— 00

To do this we expand v in a Taylor’s series

where vq, vq, etc., denote the values of v and its differential coefficients

with respect to N, for the value N = Nq, Now if a > A, as we may
assume to be the case, it is clear that most of the integral (27) comes
from N NqI we shall therefore secure a good approximation if we
neglect terms in (N—Nq)^ in the expansion of v. We may note that

for de Broghe waves in the non-relativistic theory this approximation
is exact, since v is a quadratic function of N.

Writing == f,

the equation (27) becomes
+00

ils = C77*(T
J
exp[-aC»+26C+c] dC,
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where
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a =
6 = 7Ti[vQt'—z),

c = 27ri{NQZ— vqI),

The integrand may be written

exp

Putting fe/a — 77, we obtain for ^
CO

iff = exp^c -f-

—j J*

drj,

—00

== (77rora~*exp^c4-~j.

Putting in the values of a, 6, c, we obtain

^ = Crj^l+^*j~^expj^27rt(iV;,2— vo<)

The wave packet reduces to (25) at time ^ ~ 0, as it should. At time

t the centre of the wave packet is at the point

z = vqL

Thus the velocity of the wave packet is equal to the group velocity

dvjdN. A further important property of the wave packet is the spread-

ing. Considering the exponential term in ifj only, we have for the

— “

amplitude |^|,

exp
J"

For large if, therefore, the breadth of the wave packet is of order of

magnitude
2i/;</7ra.

The wave packet therefore spreads as it goes along, and the velocity

with which its length increases is

d^v 2

If the waves are de Broglie waves,t we have in the non-relativistic

theory
dv

dN m
= V and

dh^

dN^

A

m’

t Wave packets of de Broglie waves have been considered by various authors. Darwin
{Proc. Boy. 80c. A 117 (1927), 268) has given the wave function for a three-dimensional
wave packet in free space (eq. (5.6)), a wave packet describing an electron xmder a
constant electric force (eq. (6.2)), and under constant magnetic held (eq, (7.10)),

Wave packets are discussed by Condon and Morse, Quantum Mechanics

^

p. 219 ; Frenkel,
Warn Mechanics^ p. 60.

»8»6.67 O
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We have therefore for ^

^=(7 1 + -

^ ' —[vt—zY

Yo^-{-ihtlTtm

.ImvH

\~W
One of the most important properties of wave packets is that, if a

wave packet passes through any electric or magnetic field which does

not vary appreciably in a distance comparable with the size of the wave
packet, then it will follow the classical path. A proof is given in various

text-books.f

t See, for example: Dirac, Quantum Medianics, .3rd edition, p. 121; Fronkel, Wave
Mechanics, Elementary Theory, 2nd edition, § 9; Dobyo, Phys. Zeitschrift, 28 (1927), 170;
Ehrenfest, Zeits.f. Physik, 45 (1927), 455; Ruark, Phys. Itev.il (1928), 1133; Mott and
Sneddon, Wave Mechanics and its Applications, p. 28.



II

THE THEORY OF THE SCATTERING OF A BEAM
OF PARTICLES BY A CENTRE OF FORCE

1. Calculation of scattered intensity

The problem of the collision between an electron and an atom is a

‘many-body' problem, and as such will be considered in Chapter VIII;

in this chapter we shall consider the scattering of a stream of charged

particles by a small spherically symmetrical region in which their poten-

tial energy is different from zero; we shall call this region the ‘atom’,

and the potential energy of a particle at distance r from the nucleus

will be denoted by V{r). In Chapter VIII it is shown that the elastic

scattering by atoms can, to a certain approximation, be treated in this

way, and methods are given for the calculation of V[r),

In experiments on the scattering of a beam of particles, one measures

the number of scattered particles falhng per unit time on an area dS
placed at a distance r from the scattering atoms. For purposes of

calculation we suppose that there is only one scattering atom. The

number of particles falling on dS will then be proportional to the area

dS and inversely to the square of the distance r. That is to say, the

number is proportional to the solid angle rfco subtended by dS at the

centre of the atom. We shall refer to the particles which hit dS as

‘scattered through an angle 6 into the sohd angle d(x>\

The number of particles scattered into the sohd angle dw is also pro-

portional to the current per unit area in the incident beam. Suppose

that N particles cross unit area per unit time in the incident beam.

Let the number of particles scattered per unit time through an angle

0 into the sohd angle da» be
NI[e) dw.

Then /(0) is the quantity that we wish to calculate. I[d) dw has the

dimensions of an area, and will be referred to either as the effective

cross-section for scattering into the sohd angle dco or as the differential

cross-section.

We shall refer, in what foUows, to the charged particles as electrons,

though the analysis is applicable equally to any type of particle.

Let {x, y, z) denote the Cartesian coordinates of the electron at any
moment, and (r, 0, its spherical polar coordinates, the z-axis being

the axis from which 6 is measured.! We shall suppose the atom to be

t i.e. rcosd = 2, rsinOe^ = x-^iy.
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situated at the origin, and the potential energy of an electron distant

r from the origin to be F(r). In this section we shall assume that V{r)

tends to zero faster than 1/r; the case of Coulomb scattering will be

considered in Chapter III. We shall suppose that a stream of electrons

moves with velocity v from left to right along the 2;-axis. We represent

this stream of electrons by the plane wave exp(iA;2), where k is equal

to 27rmv/A. This wave represents a density of electrons of one per unit

volume, and therefore a flow ofv electrons across unit area per imit time.

The wave will be scattered by the atom, the ampHtude of the scattered

wave at the point (r, 0, being, let us say.

Our problem is to find the function f{d). From it we can deduce the

number scattered into a given solid angle per unit time. The number

of electrons in the scattered wave crossing an element of area dS at the

point (r, 0, 4) is vr-^ dS \f{d) per unit time; and therefore, ifthe incident

beam is such that one electron falls on unit area per unit time, the

number 1(6) dto scattered into a given solid angle do} per unit time is

equal to \f{6)\^ dco. We have therefore

The number of particles scattered between angles 0 and 6+d6 is

\f{d)\^27Tsm6 d0.

Our problem, then, is to find a solution ifj of the wave equation which,

at a large distance from the atom, represents an incident wave and a

scattered wave. That is to say, we must have, for large r,

0 ^ (
1
)

The wave equation satisfied by ^ (SchrOdinger’s equation) may be

VV+[*2-?7(r)]^ = 0, (2)

where k = 2'mnvlh,

Before considering the solution of (2) we require a certain expansion

in spherical harmonics (eq. (8)), which will now be proved.

The plane wave e^^^ is a solution of the equation

Vhl>+khf3 == 0. (3)

The equation can also be solved in spherical polar coordinates; it is

easily seen that
^ = P„(cos0)/„(r)
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is a solution, if is a solution of the equation

and P^{coBd) is the nth Legendre coeflScient.f The equation (4) can be

solved in series; there are two solutions, one beginning with and the

other with they are expressible in terms of Bessel functions (cf.

eq. (9)). Let us denote by/^(r) the solution of (4) that is bounded at

r = 0. Then, except for an arbitrary multiplying constant, f^{r) is

determined.

Clearly, if the are arbitrary constants,

f ^„ P„(co8e)/„(r) (5)
n »=0

is a solution of (3), and we know further that this is the most general

solution of (3) which has axial symmetry (i.e. does not involve
<f>),

and

which is finite at the origin. It follows that can be expanded in

this form.

Let, then, J
n =*0

To obtain we multiply both sides by P^(cos0)sin0 and integrate

from 0 to TT. Putting cos 0 == ^, we obtain

+1

^^n/nW = (6)

fn has been defined except for an arbitrary multiplying constant, and

A^ cannot be determined until this is given. We can define/^ exactly

by means of its asymptotic expansion for large r; integrating the right-

hand side of (6) by parts, we obtain

-1

The second term is of order l/r^; for large r, therefore, we have

Since J^(l) == 1, 1) = fhe right-hand side of this equation

is equal to
2i^(&r)“isin(A:r— ^nir).

If now we determine completely by stipulating that it shall be that

t Whittaker and Watson, Modern Ancdysis, p. 302.
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solution of (4) which has the asymptotic form

/«(0 Bm{kr—\n-iT),
(
7

)

then we see that is equal to and therefore

00

gifts == 2 (2»+l)-t»‘P„(cos0)/„(r), (8)
n==0

which is the required expansion. For reference we give here the expres-

sions for/,^ in terms of Bessel functions, viz.

fj^r) ~ ^mkrjkr,

fn{r) = (9)

Let us now consider the wave equation (2) for an electron in the field

of an atom. As before, the general solution of (2) having axial sym-

metry is 00

(
10

)
n~0

where the A,^ are arbitrary constants, and is any solution of

As before, (11) has two independent solutions,! one finite at the origin

and the other infinite. We wish to choose the constants A^ so that (10)

shall represent an incident wave and a scattered wave—i.e. so that

(10) shall have the asymptotic form (1). It is necessary that our wave
function should be everywhere finite; must therefore be chosen to

be that solution of (11) that is finite at the origin. L^{r) is then defined

except for an arbitrary multiplying constant.

If we set “ r~~^G{r),

equation (11) reduces to

For large r the last two terms in the bracket tend to zero, and we
should therefore expect that the asymptotic form of any solution G
would be /-r /I • /7 I \G A. sin(A;r+€), (13)

where A and c are constants.

To test whether this is so, we set

0 = u{r)e'^^.

t Wo assume that if U{r) has a pole at the origin, it is not of higher order than
Of. § 3.
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Substituting in (12), we obtain

For large r, we may assume, since u is nearly a constant,

d^u , , du
dir>*’‘Tr-

( 14 )

Neglecting the former term, we can integrate (14); we obtain

r

2iklogu = j
C7(r)

4-
j

dr.

The right-hand side tends to a constant for large r if and only if C7(r)

tends to zero faster than 1/r as r tends to infinity. Thus for fields which

fall to zero faster than the Coulomb field, G has the asymptotic form

(13). The case of the Coulomb field is considered in Chapter III.

The particular solution of ( 1 1) that is finite at the origin will therefore

have the form i i \sm(fcr—

where C is an arbitrary constant, andf y]n is a constant that depends

on k and on U{r), and which can in general only be determined by
numerical integration (cf. § 3). To fix the arbitrary constant C, we
define L^,{r) to be that bounded solution of (11) that has the asymptotic

{fcr)-isin{i;r— Jw77'+r?„). (15)

We have to choose the constants in (10). If we subtract the

expression (8) for the incident plane wave, we obtain the expression

for the scattered wave. We have to choose the so that this does

actually represent a scattered wave—^i.e. so that there are no terms of

the type asymptotic expansion. Thus for all n we must
have, for large r,

!)*"/«{»•) ~
where is some constant. Putting in the asymptotic expressions for

fny we obtain for the left-hand side

^ikp

2ikr
[A^e^Vn^{2n+l)i^]

^-ikp

2ikr
[A„e-ivn-{2n+iy],

where kp = kr—^nn.

Choosing so that the second term shall vanish, we have

A^ =
t Tlie term — Jnir is added so that, if V{r) is zero, 17 ,j

shaU be zero.
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For the wave function, therefore, that represents the incident wave and

the scattered wave, we have

^ = I; (271+ l)iV’?-L„{r)P„{co8 6), (16)
n=0

and for the asymptotic form of the scattered wave

r-ie»+f(0),

with f{d) =^2 (27!,+ l)[e2»’?«— iJPJcose). (17)

7l==0

This gives us our expression for the amplitude of the scattered wave.

It will be noticed that/(0) is complex; the scattered intensity I[6) is

given by the square of the modulus, i.e. by where

S = ^2(2«+l)sin2,,„P„.

These series are, in general, convergent (cf. § 2). There is only one case

in which the series (17) can be summed in terms of known functions,

namely, the scattering by a Coulomb field, which we shall consider in

Chapter III. We shall find there that the scattered intensitj^ is the

same as that given by the classical theory. This is not true of any other

field that has been investigated.

The total elastic cross-section Q of an atom for electrons of a given

velocity is defined as the total number of electrons scattered elastically

by the atom, per unit time, from a beam of unit intensity, i.e. such

that one electron crosses unit area per unit time. In practice the number
scattered through an angle greater than some small angle 6^ is measured,

but since /(0) is bounded at 0 = 0 for atomic fields, Q is very insensitive

to 0Q, and thus 6^ may be taken to be zero.!

The formula for ^ is ^

Q 27r
jj

If(0)l^8in0 d0,

0

This gives

oo

^(2n+l)sin®

The method of this section was first used by Rayleigh.J It was first

applied to the problem of the scattering of electrons by atoms by Fax^n
and Holtsmark.§

t Cf. Chap. X, § 2.

§ Zeita.f. Physik, 45 (1927), 307.
t Theory of Souvd, ii. 323.
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2. Connexion between the phases rj^ and the angular momen-
tum of the scattered particle

The phases that occur in the expression (17) for the scattered

amplitude are, as we have seen, defined in the following way. Let

OJ^r) be the bounded solution of

G''+|^jfc2-?7(r)-^(^L+l)jG = 0, (19)

where the dashes denote differentiation with respect to r. Then, for

large r, G will have the as3nnptotic form

7}^ is thus defined.

If U[r) falls exponentially to zero for large r, it is possible to make
an estimate of the value of for fairly large n, and thus to estimate

the number of terms required to sum the series (17) for f(6). The con-

vergence of the series may also be tested in this way.

Let us denote by F{r) the function

F{r) = k^-U{r)-^!t^.
(
20

)

If U{r) has no pole of higher order than r“^, I^(r) is negative for small

r and positive for large r, and has therefore at least one zero. For

simplicity we shall suppose that F(r) has only one zero, which we call r^.

The solution G of equation (19) behaves for small r like where

^ is a constant which we shall assume positive. Thus for small r, both

G and G' are positive, and we see from (19) that G" is positive also.

Now, for increasing r, G cannot decrease until G' changes sign, and

this can only happen for a value of r greater than the first zero of G'".

But since G is increasing and therefore positive until the first zero of

it follows from (19) that this zero is at the point r^. Thus G increases

(exponentially) until the point r — The proof is similar if A is

negative.

For r > r^, G is an oscillating function, as shown in Fig. 2.

Let us now find the closest distance of approach, according to the

classical theory, of an electron of energy E fired at an atom, in such

a way that its angular momentum about the nucleus is I. I is the

product of the initial momentum of the electron and the ‘impact para-

meter’! P- If ^ the velocity of the electron at the point of closest

t The ‘impact parameter* is the distance between the initial line of motion of the
particle and the centre of the scattering field.
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approach, we have, firstly, since energy is conserved,

and secondly, by the principle of conservation of angular momentum,

since the radial velocity is zero at the point of closest approach,

mvr = /.

Eliminating v, we obtain for r the equation

E~V(r)~-l^l2mr^ =: 0
. (

21
)

Hr)

>

>

7

G(r)

Fig. 2

If we put 1 ~ A[n(?i+l)]V27r, (22)

then equation (21) is equivalent to

F{r) = 0,

F{r) being defined by (20). Thus the zero of F{r) is the distancA? to

which a particle of angular momentum given by (22) would approach,

according to the classical theory.

We have already seen that \0,J^r)
\

is very small for r much less than

We shall now show that if ti is so big that a particle wiih angular

momentum I given by (22) does not penetrate the atom (according to

the classical theory), then the corresponding phase is very small.

We have to show, therefore, that if F(r^) is very small for n greater

than a certain value, is also very small for these values of n. We
note that if F(r^J is very small, is approximately the zero of

Let now g^{r) be that solution of the equation

dr^
+(p-

/

g- = 0
(23 )
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which is bounded at the origin, the arbitrary multiplying constant being

chosen in such a way that

~ sin(*r—

for large r, is equal tof

{-^^rl2)iJn+i{kr).

It follows from the arguments given above that g^ decreases exponen-

tially as r decreases, for r less than The form of the function is

similar to that of the function G illustrated in Fig. 2.

We now solve the wave equation (19) by a perturbation method.

We put

and assume that the product <5>U can be neglected. Substituting into

the equation (19), we obtain for <1>,

(24)

Let <& = gn{r)l{r).

Then, substituting in (24), we obtain

= U{r)g,[r).

Multiplying this equation by g[r), and integrating, we obtain

I'g^ = /
U(r)[g{r)fdr.

Since ^ must be bounded at r — 0, and g[r) behaves like for small

r, the lower limit of integration must be zero. Thus we see that

r

§=[(/(<•)}-/ WMr)f'lr.
0

For large r we have therefore

U{r)[g{r)fdr, (26)

since the integral on the right converges.

Let us denote by the integral

cosec2(fcr— 1^77)
J

/
V{r)[g^{r)Ydr.

0

We have postulated that, for the value of n considered, U{r) is small

for r > r„, and we know that is small for r < r„. Thus is small.

t Cf. equation (9).
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Integrating (25), we obtain

^ ^ --[cot{hr~-\n7T)~\-o(]AJk,

where a is a constant. Hence we obtain

~ sin(ibr-~|n7r)--[cos(jfcr--|n7r)+asin(i;r—

Neglecting terms involving the square of 77^, we see that

^ const. sm{kr—lmT-\-rj^), (26)

where rj^ = —AJk.

Writing out this formula for rj^ in full, we obtain

00

J
dr. (27)

0

The formula is valid if the right-hand side is small, and shows that 77^

is small under the conditions stated.

The formula (27), being valid for large n, may be used to test the

convergency of series (17) for the scattered amplitude. The series con-

verges if
2 ^„P„(cos 0

){
2«+l)

converges.

If 77^ 1 for all n, the formula (27) may be used for all n. We then

obtain for the scattered amplitude

/(^) = ^ 2
n «“0

The series may be summed and yields the well-known Bo7 n formula

(cf. Chap. VII, § 2).

3. Scattering by a potential hole

In this section we illustrate the theory by the important case of

scattering by a potential hole.

We take for the potential of the particle in the scattering field

V{r) - -D (r < a),

— 0 (r > a),

where D is a positive constant. This simple case includes a great

number of features common to scattering by attractive potentials in

general, provided they fall off more rapidly than f* for large r. We
shall therefore use it as one example to illustrate the theory.
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3#1. Low-velocity limit of the cross-section.

We shall first suppose that the wave-length A is very much greater

than a, so that all the phases are negligible except the first, (Note

that the distance of closest approach of a particle with one quantum

of angular momentum is X/27t if the particle does not enter the potential

hole.) To obtain 7)q we have to find the asymptotic form of the solution

of d^O Srr^m{E-V)G^0,

which vanishes at the origin (since r~^G must be bounded). The solution

A sink'r (r <a),

sin(ir+77o) (r > a),

where
Jfc2 = SnhnElh^ = k^-\-kl fcg = STThriD/hK

The constants A and tjq must be chosen in such a way that O and dOjdr

are continuous at r = a; i.e. in such a way that

^sin^'a = sm(ia-f T]^),

Ah'co^k'a — kcoB(ka-{~7]Q).

These two equations give us

= tan“^^~tanA;'aj—te. (29)

In Fig, 3(a) the wave function O is shown by the full line; the dotted

line represents the curve q _ y
The phase is represented by the length AB, or A'B\ multiplied by k.
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It will be seen from the figure that tjq is positive for an attractive field;

for a repulsive field tjq is negative, as will be shown below.

As the velocity of the particles tends to zero tjq, in general, tends to

zero also, as may be seen from equation (29). The scattering cross-

section, 4c7TBin^rjQjk^j tends to the finite limit

4:7ra^

(

tani^a

k^a
(30)

There are exceptional cases, however. If k^ a = tan k^ a the limit

Fig. 4. Low-velocity limit of the collision cross-section as a
function of the strength of the field

(a) For spherical wells of depth D and radius a.

(h) For spherical potential barriers of height D and radius a.

vanishes, while if k^a is an odd multiple of ri^ does not tend to zero

with k and the scattering cross-section tends to infinity. Hence, if we
consider the low-velocity limit of the effective scattering cross-section

of the potential hole as a function of k^, that is to say, of the square
root of its depth, we obtain the curve illustrated in Fig. 4.

This behaviour of the low- >relocity limit of the cross-section may be
related to the distribution of allowed energy levels, with zero angular
momentum, within the hole. In order that a level ofenergy — J5, should
exist, we must have aA sin k a — e-*",

Ak''eoBk''a =
where now F* = ibg—F.

This requires that
k''a

(31)
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the roots k of which determine the energy-levels. The condition that

== 0 should be an energy-level is that h^a should be an odd multiple

of ^TT, the same as that for the existence of an unbounded low-velocity

limit for the collision cross-section. The successive infinite discontinui-

ties in Fig. 4(a) correspond respectively to increasing numbers ofallowed

energy-levels in addition to the one at zero energy. Thus when k^a — ^TT

there is only one allowed energy-level, that for = 0, but when
k^a ~ 37r/2 there are two energy-levels, the upper of which has == 0,

and so on.

The same quasi-periodic and singular behaviour of the scattering

cross-section in the limit of low velocities occurs with attractive poten-

tials in general. It is possible, therefore, that the cross-section of an

atom for very slow electrons may be either much smaller or much larger

than the region in which V{r) is comparable with the energy of the

electron. Examples of this will be discussed in Chap. X, §§ 3 and 4.

Another important practical case is that of the scattering of neutrons

by protons, which is considered in detail in Chap. XIII, § 1.

3.2. Velocity variation of tjq and of the zero-order partial cross-section

We have lim ~ lim /tan~^/~tan^'a\— to
\

\k /

This limit is indefinite by an integral multiple of tt. Thus

lim 7^0 = 6*77 (,9 == 0, 1, 2,...), k^a ^
= ^( 2s4- 1

)
7t (s = 0

,
1

,
2 ,...), kQa = ^v.

It is convenient to remove this many-valuedness by specifying that

should tend to zero as the velocity, and hence A:, tends to co.

With the formula (27) we have, for large k,

Vo

tending to zero at very large velocities. If we allow tjq to change

continuously as k decreases we find that as k->0, rj^ tends to the

nearest whole multiple of tt below i.e. to a multiple of n equal to

the number of energy-levels with zero angular momentum which exist

in the potential hole. Exceptions arise only when A^oa is a half-integral

multiple of Jtt, in which case tjq tends to k^a. Fig. 6(a) illustrates the

variation of with k for three typical cases in which there exist zero,

one, and two such energy-levels.

Turning now to the velocity variation of the zero-order partial cross-

section Qq, == iTT&in^rjJk^, we see that, if the low-velocity limit of



32 SCATTERING OF A BEAM OF PARTICLES II, § 3

is stt, where 8 is greater than 2, then Qq must vanish for such values of

k that Tjo — («— l)iT, (5—2)77,..., etc. The physical significance of these

vanishing cross-sections is that, for such values of k, the potential hole

Fig. 5 . Variation of phases t/q, -71, 72 with velocity for different strengths of field

and radius a.==
j

I
(b) For spherical potential barriers of height D

^ J
and radius a.

is just strong enough to introduce one or more additional complete

wave-lengths within its range of action. To all intents and purposes

the wave outside the hole remains unaffected, the gain of one or more

complete wave-lengths being unobservable at infinity.

If Qq passes through a zero at some finite value of k for which the
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first- and higher-order cross-sections are still very small, the total cross-

section Q will show a deep minimum at this particular velocity. This

possibility exists for scattering by attractive fields in general and is

responsible for the Ramsauer-Townsend effect in the scattering of elec-

trons by certain atoms (see Chap. X). Typical variations of with

velocity are illustrated in Fig. 6 a.

(a) AbtracbiVe potenbial (b) Repulsive potenbial

Fia. 6 . Variation of partial and total crosB-sections Qo, Qi, Qt* Q with velocity

for different strengths of field.

(

At®= —

j

and radius o.

(b) For spherical potential barriers of height Z> radius a.

Under certain circumstances of importance a useful approximate

formula may be obtained for We consider a deep and narrow

potential hole. It is such that

(a) a level exists with binding energy ——

,

(6) /ca < 1 . Since order that an energy level should exist,

t Wigner, Zeits.f, Physik^ 83 (1933), 263.
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it follows that > k, i.e. that the binding energy is small com-

pared with the depth of the hole.
r

We now obtain an approximate expression for Qq for such velocities

that ka To do this we expand

sin^Tjo = tani -ka

in powers of K^)l{k\— using the relation

tan{(i§— #c2)%} _ 1- --

We find then that

<2o
= 47r

(1+^a+terms of higher order).

(32)

(33)

The equation (32) has a root k sati8f5dng the condition (6) if k^a is

slightly greater than ^tt. If, on the other hand, k^ a is slightly less than

Jtt, a quantity A can be found which satisfies

tan{(i;§4-A2)ia} _ 1

(ki+x^)i -y ^ ’

Qq may then be written

in
Aa+terms of higher order). (35)

In this case no real energy level exists but only a virtual one.*]*

Under the conditions we have specified the velocity variation of the

cross-section gives direct information about the real or virtual energy

of the level nearest to zero. (All partial cross-sections except Qq will be

negligible for ka 1.) It is important to remember, however, that

there is no means of telling whether the level is real or virtual, without

having recourse to some other type of measurement.

The application of the formulae (33) and (35), which do not depend

on the detailed shape of the potential field provided its range is small,

to the interaction between neutron and proton is discussed in Chap.

XIII, § 1.1.

t At a virtual level for which Xa is small, A is nearly equal to the value of k for which
the phase-shift = Jtt (Breit, Thaxton, and Eisenbud, Phys. Rev, 55 (1939), 1018;
Plesset and Brown, Proc, Nat, Acad, Sci, 25 (1939), 600). Another definition has been
given by Hulth^, Arkiv. Math, Ast, Phya,, Svenaka Vet. Akad. 29 (1942), which agrees
with (34) for the case of a spherical well interaction when Xa in.



II, §3 SCATTERING BY A POTENTIAL HOLE 35

3.3. The higher order phases and partial cross-sections

To determine we must find the asymptotic form of the solution of

7^2
”(»+!)

^2

which vanishes at the origin. The solution is

^^^Jn+i{k'r) (r < a),

{inkr)i[co3rj„J„+^{kr)+{-l)^sin7]„J^^_^{kr)] (r > a).

This follows from the fact thatf

0 = 0 {r < a),

0 = 0 {r > a).

J-n-i{kr) cos{kr-ln-!r).

Using the condition of continuity of 0 and dOjdr at r = a we find

tanij„ =

By making use of the relations^

this may be thrown into the alternative form

tan7p„ = {-1)-CJD,„

To examine the behaviour with particle velocity we make use of the

approximations for small x§

This gives, for small ka,

-
i(2.+*i’)!7a»U)!P^"+ -2^

where /„ •= J,^{h'a)l{faJ,^{i:'a)}.

t Whittaker and Watson, Modem Analysis (Cambridge, 1927), 4th edition, CJhap^
XVII, 366. X Ibid., p. 300. § Ibid., p. 356.

where
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Hence, if Jn^^{kQa) ^ 0, we have

(s_ 0,1,2,...),

where /JO) = ^„+#o«)/{*o«^ti-i(*o«)}- (38)

If Jn-iihO') = 0,

(» = ».1.V.). (39)

Comparing the behaviour of these phases with that of we notice

certain points of similarity. The special case = 0, which

gives a slower dependence on velocity, corresponds to the existence of

a level of zero energy with angular momentum Ifwe adopt

the convention that rj^ should tend to zero for large velocities, then the

value of s in (38) and (39) is determined, as for as being the number

of energy levels with angular momentum 1)}^S. This number can

never increase as n increases, since the acquii'ement of extra angular

momentum leads, owing to the extra centrifugal force, to a weakening

of the binding.

Ifka is small the importance ofthe successive phases falls off rapidly asn

increases. Tyj)ical sets ofphase-velocity curves are illustrated in Fig. 5 [a )

.

Turning now to the partial cross-sections — 4:7T{2n+i)^in^T]Jk^f

we see from (38) and (39) that, for all n > 0, never tends to oo as

k-> 0. In fact for n > must always tend to 0 at least as fast as

^471-4 usually as k^^. It is only in the special case of n = 1 and

J^(koa) == 0 that tends to a finite value as A: 0. For this case we
find, using the explicit expression

“ (£)**“*’

that lim Qj^
= l27Ta^.

fc-H)

As this occurs when kga is an integral multiple of tt (other than zero),

it arises when lim Qq vanishes, so that the low-velocity limit of the
k-^O

total cross-section can never be exactly zero.

Typical sets of cross-section velocity curves are illustrated in Fig. 6(o).

4. Scattering by a uniform potential barrier

We now consider the case where the scattering potential is given by

V{r) = D (r < a),

= 0 (r > a),
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which can be regarded as exemplifying repulsive potentials in general

which fall off more rapidly than r~^ for large r. The case of an impene-

trable sphere, for which D tends to infinity, is also a rather special one

and will be discussed separately in the next section.

We have, writing where = Sir^mDIh^y

rj^ = tan~^ tanh i'a
j

—ku

tan~^ [k > k,). (40)

The wave function is illustrated in Fig. 3(6) and compared with the

curve G = sin/jr. The phase 77^, represented by the length AB multi-

plied by ky is negative.

In the limit of low velocities 77^ tends to zero, no matter what the

value ofD may be. The scattering cross-section tends to the finite limit

tanh Ajjj a

k^a
(41)

which is always less than 47ra^, a value to which it tends as D becomes

very large. This is in sharp contrast with the case of the potential well

discussed in the preceding section. The anomalous behaviour of the

scattering cross-section in that case was shown to be related to the

existence of energy levels in the well. No such energy levels can exist

in the repulsive field and no anomalies arise in the scattering cross-

section. The variation of the low-velocity limit of the cross-section

with k^a is illustrated in Fig. 4.

Considering again the relation between the number of energy levels

and the integral multiple of tt to which the phase tends as the velocity

tends to zero, we would expect for the repulsive field, in which no

energy levels exist, that the phase 770 should always tend to zero for

both large and small velocities. This is indeed the case, as may be seen

from Fig. 6(6). On the other hand, may pass through values of

where ^ is a negative integer, at intermediate values of the velocity.

At such points the zero-order partial cross-section vanishes—the poten-

tial barrier produces no observable effect at great distances on the waves
of zero angular momentum because it just eliminates a whole number s

complete waves which in its absence would have occurred in the

distance a. This can only arise if the asymptotic wave-length is smaller

than a, under which conditions the higher order partial cross-sections

cannot be neglected. It is therefore not to be expected that the total
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cross-section due to a repulsive field can ever show a deep minimum as

a function of velocity. This is in contrast to the potential well, which

can introduce additional waves in a region shorter than a wave-length,

so that conditions may arise in which all the higher order partial cross-

sections are small at a velocity for which that of.zero-order vanishes.

The phase is given, for k < by

where

I

In+h{^) is the Bessel function defined by

For k > k^, I^^^^{k'a) is replaced by

We now have

lim 7^,,

k-*0

where

n! (n—l)l

4(2n+l)! (2n^)]
[(2n+l)f„(0)-l](2ka) 2n^l

/n(0) = 4+i{^'o«)/{*0«4-i(*0«)}-

(42)

As vanish except when kg = 0, there are no special

cases. This is expected from the absence of energy levels of any angular

momentum. Just as for tjq, 0 as k 0 and k^-^co.

Typical sets of phase velocity and cross-section velocity curves are

illustrated in Figs. 5(6), 6(6) respectively.

5. Scattering by an impenetrable sphere

This represents the limiting case of the preceding example when
Z) 00 . The wave function G must vanish at the boundary of the

sphere so we have, for n = 0,

O — sinA;(r—a),

giving yg
— —ka, a result which might have been derived by making

i;' -> 00 in (40).

For the higher order phases

The low-velocity limit of the cross-section is 47ra*, four times the

classical value. It is of interest to note that, even at the highest

velocities, the classical value is not approached, but a value twice as

great. This may be seen as follows.
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For values of Jca large compared with w, we may replace the Bessel

functions in (43) by their asymptotic values to give

Vn = -ka—imr, (44)

The sum of the partial cross-sections for n <ka may now be replaced

by the integral
ka

^ J
[2x+l)mj\^{ka--\xTT) dx

0

For n'> ka the ratio of the Bessel functions falls off very rapidly, as

[kajnY, so the contribution of the partial cross-sections, for n > to,

may be neglected. We therefore have

lim Q = 2 X geometrical cross-section.
k-^co

This somewhat paradoxical result, first noticed by Massey and Mohr,J
arises from the impossibility, due to diffraction, of accurate determina-

tion of angles of deflexion below a certain magnitude. There is always

a cone of finite angle (of order Tr/to), centred at the obstacle and with

axis in the incident direction, within which the scattering is non-

t A more precise treatment, using a closer approximation to than (43), shows that
the error is actually 0{(fca)~^} (Wergeland, SJcriJ. Norake Videna. Akad. Oslo, Mat,-NcU.
Klaaae, 1945, no, 9).

t Proc. Roy, JSoc. A, 141 (1933), 434.
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classical. Although the angle of this cone decreases indefinitely with k,

the scattered current within it remains at least equal to that distributed,

more or less uniformly, throughout the remainder of the angular range.

As the latter approximates to the classical scattering it follows that the

total scattering is double the classical value. As an illustration, Pig. 7

shows the function 7(0), calculated for the case ka = 20, compared with

the uniform classical distribution.

For further details concerning the scattering by impenetrable spheres,

reference may be made to the original papers, f Some applications to

gas kinetics are referred to in Chap. XII, § 3.1.

6. Scattering by an inverse cube law field

Let the potential energy at distance r from the nucleus be Then

the wave equation to determine L is

The solutions of this equation are

(47)

where v is either root of

v(v+l) = n{n+l)+^,

i.e. V = ^[-l±(l+4«+4ra2+4j8)*]. (48)

Now our wave function L{r) must be finite at the origin. That is to

say, since r~'^Jy+\{kr) behaves like r*' at the origin we must have

v > 0 (all 7i).

If jS is positive (repulsive field), then this condition is satisfied for one

root and not the other. Thus the bounded solution is unique, as it is

for fields with a lower singularity. If p is negative (attractive field),

there are then two possibilities; if — J < ^8 < 0 then, for n = 0, both

solutions are unbounded at the origin, but there is one solution for

which the singularity is of a lower order than for any other solution.

If we choose to take this as our solution, a formula for the scattered

intensity may be obtained. If, on the other hand, ^3 < — J, both solu-

tions behave like r“* exp( log r) near the origin. There is therefore no

solution of the scattering problem for this case. It is not merely that a

singularity of this type at the origin is objectionable. There is no

t Massey and Mohr, loc. cit.; Wergeland, loc. cit.; Kgl. Dansk. Videns. Selskab, 23
(1946), 14.
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solution because there is no criterion as to which solution of equation

(46) ought to be taken, and thus the phase cannot be defined.

Returning to the case of the repulsive field, we see from the asymp-

totic form of (47) that iV f
rj.,^ = i7r{v—n),

where v is the positive root of equation (48). For large n this reduces to

^7Tl3/[2n-\-l)-

The reader will easily verify that formula (27) gives the same result.

As the phase sliifts do not depend on the velocity, the angular distri-

bution function l{d) retains the same shape at all velocities, in sharp

contrast to the cases discussed in the preceding sections. Owing to the

slow convergence of the phases for large n, the series of partial cross-

sections does not converge and no total cross-section exists. This arises

from the unbounded behaviour of 1
(
6

)
as ^ O.f

7. Dispersion formula for the scattering cross-section

We give now an alternative formula for the partial cross-section for scattering

of particles of given angular momentum, which bears a close resemblance to that

describing optical dispersion by a medium containing damped oscillators possess-

ing various natural frequencies. The formula is not of practical importance for

single-body problems, but we give it hero because it provides a convenient basis

for generalization to many-body phenomena, such as nuclear collisions, for which

the dispersion effect is all important (see Chap. VIII, § 8.2; Chap. XIII, § 2). We
follow the method due to Kapur and Peierls.J

Consider first the case of particles with zero angular momentum, moving in

a potential field wholly contained within a radius a. The equation for the partial

wave IS

dr^
q.[A:a_U(r)](7o= 0,

with 17 = 0, r > a. Then, for r > a,

a, -

the first term representing the incident wave, the second the scattered wave.
The zero-order partial cross-section is given by

477|^|V|/1*.

In order that Qq and dOJdr be continuous at r = a

= (^®) -ikGoia). (49)

3 = coBkaQ„(a)—^Bmka(^^'j . (60)

The amplitude 1 of the incident wave would vanish if

dO
^ ikO = 0 (r = a). (51)

t See Chap. VII, § 1.1. J Proc, Roy. Soc. A, 166 (1938), 277.
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This is not possible for a solution of the equation which is valid over the whole

range of r, but we may take (51), together with the condition 6? — 0 at r — 0, as

boundary conditions at the ends of the finite interval 0 < r < a, to define a set

of proper functions and proper values of the equation

^^(ie.-UYS.= 0, (52)

valid within that interval. will, in general, be complex and a fimction of h.

The functions will form an orthogonal set, so

0

and they may be normalized, so

|V,Pdr= 1.

(»

We may now obtain an expansion, valid for 0 < r < a, for the actual function

Qq which solves the scattering problem, in terms of the and It is true

that Qq does not satisfy the same boundary conditions as the but any function

provided that
o II p (53)

(64)

and is a proper function throughout the range 0 < r < a.

Expanding the function in the usual way in terms of the we find

(66)

where

*. = J
0

N. = j9tdr.

(66)

0

We have then, on substitution in (50) and using (49),

S

This formxila must hold for all functions which satisfy (63) and (54). We may
choose X fo make both the last terms of (67) as small as we please, as, for example,

by taking _ Cre-««^),

choosing G to satisfy the condition at r = a and then making a ->• oo. It is

therefore legitimate to ignore all but the terms within the curly bracket, to give

for the zero-order partial cross-section

4. 1
^'-
m*'

7T
~2ika

-2e~^*‘*sinA^ m
f The choice of the particular set of functions 3?, for this expansion may seem rather

arbitrary, but it is of special significance for the many-body problem (see Chap. VIII,
§8.21).
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Here we have written

/ Tch^ \i

(69)

(60)

8n*m'’~ • * •’ 8jr»m

We have further, from the differential equation for S?,,

® 87r»ml^‘ dr * dr\'
0

®

Use of the boundary condition (61) gives

r. = Kl»
since % vanishes at r = 0.

The sum which occurs in (57) is characteristic of dispersion theory for a set

of oscillators with energy levels Eg of natural width Tg, The remaining term
represents the shadow effect of the scattering field and is referred to in nuclear

theory as the ‘potential’ scattering. It is the same as the amplitude that would

be scattered by an impenetrable sphere of radius a.

This analysis may be generalized to cover cases in which the angular momentum
is not zero and when, in addition to the potential of range o, there is also present

a gradually decreasing potential which vanishes at infinity faster than r~*.t The
fimction O^, describing the scattering, then satisfies

dr^
(r < a). (61)

(r > a). (62)

The auxiliary functions ^7, must now satisfy the equation (61) for 0 < r < a.

As before, they vanish for r = 0, but, for r = o, the condition (61) is replaced by
d%

where f-

(63)

(64)
I dG+
G+ dr

’

being the solution of (62) which has the asymptotic form

G+ ~ e^ikr-innl (05)

Following an exactly similar procedure to that above, we find for the nth-order

partial cross-section

(2n-M) (66)

Eg, r,, and Ng are again defined as in (69) and (66). is the phase shift produced
in the nth-order partial wave by a potential V where

STT^m ,
: F = TF {r> a)

(r = a).00 (r = a), (67)

The second term thus represents the amplitude scattered by this potential.

Wg is no longer related to ^,(a) by the formula (59) but by the more general

relation / j.2 u
9,{a) = w,.

ISTT^mV

With this definition, = \Wg\^, as before.

t For the extension to the case of a Coulomb field see Chap. Ill, § 6.1.

(68 )
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If TF(r) = 0,

and, if further, lea is small,

/-/* = 2zF«+i(2a)^«(^)\

giving r, = (69)

It will be noted that, for the general case we have just discussed, there is a

considerable ambiguity in choice of a. Different choices must lead, of course, to

the same final result, but the relative importance of the dispersion and potential

scattering terms can be varied greatly in this way. In most cases where the

formula is useful the best choice of a is sufficiently clear to prevent serious

ambiguity (see Chap. VIII, § 8.21).
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SCATTERING OF A BEAM OF PARTICLES BY
A COULOMB FIELD

1. Introduction

If a beam of charged particles, each carr3dng a charge Z'e, and such

that one particle crosses unit area per unit time, falls on a single nucleus

of infinite mass and charge Ze, then, according to Newtonian mechanics,

the number of particles l{d) dco scattered per unit time through an

angle 0 into the solid angle doj is given by

1(0) -= {ZZ'€^^l2mv^)^cosec^0,
(
1

)

where m, v are the mass and velocity of the incident particles. This

formula was first deduced by Rutherford; the proof is given in various

text-books, and will not be reproduced here.f It is in agreement with

experiment for the scattering of a-particles by heavy nuclei.

In this chapter we shall show that exactly the same formula may be

deduced from the wave mechanics. We have therefore to consider the

scattering of a stream of charged particles (electrons or a-particles) by
a bare nucleus, the force between a particle and the nucleus varying

as the inverse square of the distance. For F(r), therefore, we have

V[r) = —Ze^jr (electrons),

and V{r) = 2Ze^jr (a-particles),

where Z is the atomic number of the scattering nucleus.

We shall write in general

V{r) = ZZ'^^jr, (2)

where Z'e is the charge on the scattered particle, and Z' is to be taken

positive or negative, according as the scattered particle is positively or

negatively charged. The wave equation therefore is

We have to show that a solution can be obtained with the asymptotic

(
4

)

where I represents an incident wave, S the scattered wave, and

1/(0) I
= {ZZ'«a/2mv®)cosec2 ^0. (6)

t Cf. Rutherford, Chadwick, and Ellis, Radiationsfrom Radioactive Substances, p. 191 ;

or Andrade, The Structure of the Atom, p. 21.
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We saw in Chapter II that the method given there for the calculation

of the scattered amplitude is only applicable if V{r) tends to zero faster

than as r tends to infinity. This limitation arises from the fact that

the bounded solution of the equation

dr\

rSTT^i/p ZZ'e^\ n[n-\-\y

r *r 01

1 (6)

has asymptotic formf

(ir)“^sin(ir— (a = 27TZZ'€^lhv), (7)

which differs by the logarithmic term from the form assumed in

Chap. II, eq. (15). Nevertheless, it has been shown by GordonJ that,

corresponding to Chap. II, eq. (16), the wave function that describes

the scattering is

>P(r,6) == 2 (2w+l)i"e^’?-iy„(r)P„(cose). (8)
n^O

This function is shown by Gordon to be equal to§

1; ijfcr(l— cos^)}, (9)

and to have the asymptotic form

i+sm,
I ~ exp[ii2:+ialogZ:(r— 2:)], (10)

S = r~^ exp\ikr—ioL\ogkr\ (11)

and 1/(0) I
given by (5). For the phase off(6), cf. eq. (16) of this chapter.

The forms (10), (11) for the incident and scattered waves are peculiar

to the Coulomb field. They may be explained as follows.

If we consider all the classical hyperbolic orbits with one asj mptote

pointing from right to left parallel to the z-axis, we should expect the

wave front of the incident wave to be normal to all these hyperbolae.

At large distances from the nuclei the surface perpendicular to these

hyperbolae does not tend to the form z = constant, but, as has been

shown by Gordon,
|j
to the form

. jf \

The incident wave is, as it were, distorted even at infinity by the nucleus

that it is going to encounter. Thus we should expect the incident wave

r-j , uexp^ik}^z+ -^logk{r~z

t This is proved in § 4, where is found,

j Gordon, Zeits.f. Phyaik, 48 (1928), 180.

§ The function is defined in § 3 of this chapter.
i|
Gordon, loc. oit.
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which is the same as (10). The form of the scattered wave (11) may
be explained in the same way.

In the following sections we shall show that (9) is a solution of the

wave equation, and that it has the asymptotic form given by (10), (11),

and (5). We shall not make use of the series (8) as in Gordon’s method,

but shall solve the wave equation directly. The method is one first

given by Temple.

t

2. Solution of the wave equation for scattering by a Coulomb field

The wave equation that we have to solve is

= 0 (j3 = Sn^mZZ'e^lh^). (12)

We make the following substitution: we put

(13)

and obtain V2JF-l-2iA;— —— = 0.
dz r

This partial differential equatiQU possesses a solution of the type

F ==: F{r—zy,

if we make this substitution we obtain

= 0,

F\ F" being the first and second differential coefficients of F, If we
multiply this equation by r, we see that r, z only occur in the form r— z,

and therefore a solution exists of the required tjrpe. Putting

C = r—z,

, , . yd^F
,
dF -1 ydF A /i>i\we obtain + = 0. (14)

If we try for a solution

the indicial equation gives = 0, and the solution finite at the origin

is therefore of the form oo

n ==‘0

Substituting this into (14), and equating to zero the coefficient of

we obtain the recurrence formula

[»(«4-l)+(»+l)]a„+i = o„[iA»+J/3],

t Proc. Roy. Soc. A, 121 (1928), 673.
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and therefore
^

^ Li («+i)^

It follows that is a hypergeometric function of the kind described

m § 3 ;
we have ^ ^ ^

where a = ^^/k = 2TrZZ'e^/hv.

The asymptotic expansion of F will be found in § 3; we see, from
equation (24), that F = where for large r

where

G-j^ — \ -

iH

G,= i+(i+iocY/ikz+,...

Taking the expansions as far as terms in we have therefore

ipinoL pik^

The functions W^, when multiplied by exp(iA:2:), represent the inci-

dent and scattered waves respectively. Since we require an incident

wave of unit amplitude, we take for the total wave function representing

the scattering

f

0(r, e
)
=

1; (15)

where a = ^TrZZ'^^jhVy ^ = r— z = r(l— cos0).

This wave function then has the asymptotic form

^-/+ 6/(0),

/ — [l—ofilih[r--z)'\ex^[ikz+ia\ogk{r—z)\

S = r~iexp[iA;r—icxlog&r],

ZZ* ^

where exp 2ir]o — r( 1 +ia)/r( 1—ia).

t Sommerfeld, Ann. d. Physik, 11 (1931), 267, has given the following formida for
this fmiction,

<l>(r,e) = Ja:<“e-®/„{2V(a-{a!)} dx,

where is the Bessel function defined in Whittaker and Watson, Modem Analvaia
4th edition, p. 366.

^ ’

where
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It is to be noted that Z' in these formulae is to be taken as +2 for

a-particles, — 1 for electrons.

The incident wave fronts and the scattered wave fronts have the

forms (10) and (11).

The scattered intensity I{d) is given by

m = \m? = cosec*

which is the Rutherford formula.

NOTE
At the origin (16) gives = 27ra/(e*”“— 1). (17)

F'or the case of a repulsive field, as between an a-particle and a nucleus, a is

positive. If a is large and positive, e.g. for slow a-particles, |^|“ is very small at

the origin. This means that very few particles come near the nucleus.

If OL is large and negative, e.g. for slow electrons, is fairly large at the

origin, of order of magnitude |a|.

If OL is small, the solution (15) becomes at all points not very different from

the plane wave exp(t/bz).

That OL should bo small is also the condition of applicability of the Born
approximation (Chap. VII), which consists in treating F(r) as a perturbation.

This may be seen by writing the wave equation in units of length Ijk; we obtain

VV-f(l-2a/r)i/r = 0.

3. The generalized hypergeometric series

We shall investigate in this section certain properties of the function

used in § 2, defined by

6
(
6+ 1 ). 1.2

(18)

Since we shall not have occasion to use any other function of hyper-

geometric type, we shall omit the suffixes. The function defined

by Whittakerf (confluent hypergeometric function) is connected with

this function by the equation

It may be noted here that F{a;b;z

equation ,

dz^ dz

)
is a solution of the differential

—ay=0, (19)

as may easily be verified.

We require the asymptotic expansion of the function F(a\b\z) for

\z\ large, a and b remaining constant. This expansion is well known.

t Whittaker and Watson, Modem Analysie, 4th edition, p. 337.

36»6.67 ^
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We reproduce it here because of its importance in problems connected

with Coulomb forces. The proof is similar to that given by Whittaker.f

We shall limit ourselves to the case when 6 is a positive integer, and

z complex.

It is necessary for our purpose to express as a contour integral.

To do this we make use of the theorem that if m be any positive

integer, then
1

m\
-(
2-171 J

ett-m-i dt. (
20

)

y

where y is any closed path encircling the origin once in an anti-

clockwise direction. The proof is elementary.

Now" F may be expressed in the following form:

F{a^b•,z) = (6-1)! ic,2-/(6+n-l)!,
n=°0

where is the coefficient of in the expansion of ( 1 — r) " Therefore,

by means of (20), we have, putting m = 6+^^— 1>

F{a\b\z) =
-

In-O
^

If we now choose our path y so that on all points of it

m < 1
, (

21
)

then we may reverse the order of summation and integration, the series

being convergent for all values of t. We obtain

= (
22

)

y

It will be noticed that, by virtue of (21), the path of integration y must

encircle the point t = z. We can therefore, without altering the value

of the integral, deform y into any closed path which encircles the points

^ = 0 and t = z.

It is further clear that the integrand is a single-valued function of

if a cut be made between the points t — 0 and t = z.

In order to find the asymptotic expansion of (22) we deform y into

the path y' shown in Fig. 8. Owing to the factor e* in the integrand,

those parts of y' for which the real part of t is large and negative con-

tribute very little to the integral. If we make the parts of y' marked
ABy CD, in Fig. 8 tend to an infinite distance from the imaginary axis,

t Whittaker and Watson, Modem Analysis, 4th edition, p. 339.
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then (22) may be replaced by the sum of the two integrals, one round

the lower loop and the other round the upper. We set therefore

F(a;b;z) = W^{a;b;z)+W,{a;b;z), (23)

where Wi{a\b\z) ==
J
Vi

and comes from — oo, encircles the origin in an anti-clockwise direc-

tion, and returns to — oo. is given by the same integrand, and

a path that encircles the point t — z. Making in Wg substitution

t—z — u

the path transforms into encircling the origin; we obtain

W^(a;6;2} — (b-l)l
f

2TTi J

du

(tt-f

The asymptotic expansions of Hg may now be written down.

We have /,

Wr
27Ti

dt,

Yi

Expanding the brackets in the integrand, and making use of the

theorem thatf

Yi

rw 2irt J
e'<-® dt,

t Ibid,, pp. 244-6.
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we obtain
pB^(-2)-“(?(o,a-6+l;-2)

)

eZ^a-bQl I b—a -, z),

(24)

where O denotes the semi-oonvergent series

0{oL,^\z)
» ^ 1 f » z^.2\

From (23) we obtain the asymptotic expansion of F

1 I I

(x(a+lW+l)
.

'*'2.1!“'"

4. The radial wave functions for positive energy states in a

Coulomb field

We consider now the solutions of the equation (6). Although it is

possible to calculate the scattering by a pure Coulomb field without use

of these solutions, as in § 2, they are required for the discussion of any

scattering problem in which a deviation from the Coulomb field occurs.

Thus they are of importance in nuclear problems (see § 5 and Chap.

XIII, §§ 1.2, 2.35).

Writing = 2mEj1i^, a — ZZ'e^jfiVy p == kr, the equation (6) takes

the form
^
p^dp\ dpj^X p p^ I

The substitution L == leads to the equation

which, by the further substitution

P = iiz,

(26)

gives
d^F

,
„ .dF2—+ (2«-t-2—2)-

dz^ dz
-{icx-\-n-\-\)F — 0, (26)

which is of the form (19).

Two independent solutions of this equation are thus

1. 2«+2, 2).

4.1. The bounded solution,

The solution which is regular at the origin will be

J'(toi+«4-l,2n4-2,2) = Wi+Wg. (27)
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The asymptotic expansion may be found from (24). If we take for the

bounded solution of (6)

{2krYe^F{i<x-\-n+\-,2n-\-2-, —2ikr), (28)

then ~ [kr)~^ ^\n[kr-~\mT-\-'q^— 0L\og 2kr)

with 7]^
— arg r(w+l+^a)-

4.2. The unbounded solution,

It is convenient to choose as second solution that one which has

the asymptotic form

~ (kr)-^ GOB{kr—\mT~{-'q,^—oL\og2kr), (29)

so that {2krYe}^'[W^-W^\ (30)

The series expansion of has been discussed by Sexlf and extended

to any value of n by Yost, Wheeler, and Breit. J They find that

==. i:(e2^“^l) X

where

2n+ l n p w . V.

X jlog2l.r+2r- 2 ‘'‘+

H, = 2e*™B.P.e<»-’i.'(V il: (2tr)-’‘-i-
" \^^«!r(»—«+l—la)^

'

and

-isinh™ 2
a„=yfi+^ L^V

In these expressions R.P. denotes the ‘real part of’ and y is Euler’s

constant.

4.3. Numerical calculation of and

The forms (28) and (31) are not convenient for calculation as they

involve imaginary numbers. Yost, Wheeler, and Breit§ have obtained

series expansions, involving real numbers only, which are convenient to

use provided p is not too large. They also discussed methods which are

available when the series expansions converge too slowly. Tables of the

t Zeita.J, Physih, 56 (1929 ), 72 ; 81 ( 1933 ), 163 .

t Phya, Rev, 49 (1936), 174 . § Ibid.
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functions for repulsive fields have been constructed for w = 0, 1, 2 and
a wide range of values of a and kr.'\

5. The penetrability of a Coulomb potential barrier

A particle of charge Ze approaching an atomic nucleus of charge Z’e

is repelled by the Coulomb potential at distances r greater than

the nuclear radius i2. The problem we now consider is the determination

of the chance that a particle of given initial kinetic energy (< ZZ'e^lR)

and angular momentum will penetrate to a distance JR in spite of the

repulsion. Let be the proper radial wave function for the motion,

in the modified Coulomb field, of a particle of given angular momentum
which has the asymptotic form

Gn ^ sin(ir— a:log2fcr+7;^4-or„), (32)

where is the additional phase shift due to the departure from the

Coulomb field for r JR. We may then define G^f^R) as the penetrability

exp(— for this case.

The most convenient method of estimating P,, is to use Jeifreys’s

method of approximation, as in Chap. I, § 6. The equation for G^ may
be written

-f(^Pn = 0
,

dr^

where f(r) = ^TT^mZZ'e^ n(n~f-l)

7*2
(r > R). (33)

At the classical closest distance of approach /(Po) = For
r > Rq the solution is oscillatory. For r < Rq an exponentially

increasing or decreasing solution may be found. We require that

solution which decreases as r decreases below P^. According to Jeffreys ’s

approximation this solution is

*) I' < *")•

From this we have, for the penetration probability

e-p. =. [-A;7/(J2)]*exp(2j[-/(r)pdr}. (35)

Two distinct approximations are really involved in (36). The effect

t Yost, Wheeler, and Breit, loc. cit. ; ibid. Terr. Mag. and Atmos. Elec. Dec. (1935)
443; Wicker, ibid., Dec. (1936), 390.
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of the interaction for r < i? on the wave function is ignored so that

it is taken to be the function (28) for an unmodified Coulomb field.

This is likely to be a good approximation if the penetration is small.

However, the further approximation is made of representing the func-

tion (28) by Jeffreys’s approximation. The accuracy of this has been

investigated by Yost, Wheeler, and Breit.t They find that, while (35)

is, in this respect, a fair approximation, the accuracy is much improved
by replacing n[n~\-l) in/(r) by

Substituting for/(r) from (33) we find, on integrating

^ ~2j3(iy-f-l —3:)^+a|7r+2arcsin
\-~2x

+
{l+ ixy)^]

(36)

where p = [STT^mZZ'

,

x — k^R^jp^, and y ~ are the

respective ratios of the initial kinetic energy and of the rotational

energy to the barrier height at the nuclear radius. It is only necessary

to substitute
(
71+ i)^ for n{n-\~l) throughout this formula if the improved

approximation is to be employed.

5.1. The dispersion formula with a Coulomb field

In deriving the dispersion formula (64) Chap. II for the scattering cross-

section it was assumed that, in addition to the potential of range a, there was
also present a gradually decreasing potential which vanished at infinity faster

than r~2. If, instead, the additional potential is of the Coulomb form, ZZ'e^/r,

so that, for r > a, the function of (62) Chap. II satisfies

n{n+l)
dri H r J

" (37)

we may define the quantity / in the same way as in (63) and (64) of Chapter II

but with 0:j^ chosen to be that solution of (37) which has the asymptotic form

^ exp{i(AT— JnTT— (xlog2A;r)}, (38)

where a has the same significance as in § 4. The formula (66) of Chapter II is

then regained, but with now defined so that the asymptotic form of the proper

solution of the equation for motion with angular momentum in a field

of potential y ^ zZ'€^lr (r > o)

-^00 (r = a), (39)

is sin(A;r— JnTT— alog2A;r+>7«)*

We find now that, at r = a,

/-/* = {IQ,{a)+ Ll(a)}-\

t Phye. Rev. 49 (1036), 174. See Chap. VII, § 6.2.
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where have the same significance as in §§ 4.1, 4.2 respectively. This gives,

following Chap. U (68),

1 iwr
ma ka K\(a)+L\(ay

(40)

We may use Jeffreys ’s approximation for the functions If at r ~ a the

Coulomb repulsive energy is greater than the initial kinetic energy, this gives

= [-*y(o)]~*expi:
j

[-/(r)]i

R,

dr,

where /(f) and are as m (33). We find then, if the penetration is small,

r, -

where is defined as in (35).

Comparison with the formula (69) of Chapter II for the case n =--- 0 shows that

the effect of the Coulomb field is merely to introduce the penetration factor, as

would be expected.



IV

THE SPIN OF THE ELECTRON

1. The magnetic moment of an atom

For some collision problems it is necessary to take account of the spin

of the electron. We must therefore give a treatment of the spin suitable

for use in such problems.

The hypothesis that an electron has an axis of symmetry, and thus

a fourth degree of freedom, was introduced in 1925 before the discovery

of the new quantum mechanics, in order to account for the four quantum
numbers that were found to be necessary for the classification of atomic

energy levels. In the new quantum theory, methods for treating the

spin were developed by Paulif and Darwin. J Finally, Dirac,§ by means

of a proper relativistic treatment of the wave equation, was able to

show that the spin was a necessary consequence of the principle of

relativity. In this chapter a treatment of the spin will first be given,

which is equivalent to that of Pauli, and which is sufficient for all cases

in which the spin influences the symmetry of the wave functions, but

the interaction of the spin forces with the atomic fields can be neglected.

This is the case in all collision problems where the velocity of the

electrons considered is small compared with that of light. We shall also

show the connexion between this treatment and the treatment based

on Dirac’s equation, and shall discuss a collision problem in which the

spin forces cannot be neglected.

In Dirac’s relativistic treatment of the spin the properties of the

electron can be deduced from quite general assumptions. In the more

elementary treatment, however, one takes the properties of the spin

deduced from experiment, and describes them in the notation of wave

mechanics. We begin with the fact, proved by the experiments of

Gerlach and Stern, that an atom with one electron in an S state in the

outer ring has a magnetic moment equal to ehj^iTTmc (one Bohr magne-

ton). For convenience, we shall refer to such an atom as a hydrogen

atom.

We must first remark that if we are given a hydrogen atom of which

the direction of the magnetic moment is not known, it is impossible

t Paiili, Zeita.f. Physik, 43 (1927), 601.

t Darwin, Proc. Roy. Soc. A, 116 (1927), 227; see also Dirac, Quantum Mechanics,

3rd edition, p. 149.

§ Dirac, Proc. Roy. Soc. A, 117 (1928), 630; also Quantum Mechanics, 3rd edition,

Chap. XI.
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by any conceivable experiment to discover this direction. This can be

shown by the following argument. Suppose that an attempt were made
to measure the field H outside an atom, in order to discover the direction

of the magnetic moment. This might be done by shooting an electron

past the atom and observing its deflexion. We can find the order of

magnitude of this deflexion as follow^s: If the electron passes the atom

at a distance r, the order of magnitude ofH at points where the electron

passes will be ^ ^
The force on the electron is eHvjc. This force acts on the electron for

a time of order of magnitude rfv, and produces, therefore, a momentum
of order of magnitude eHrjc. The deflexion produced is thus €Hrjmcv,

This deflexion, to be observable, must be greater than the natural

spreading of the beam of waves that represents the electron. If Ar is

the breadth of this beam, then the spreading will be h/mvAr, Thus we

must have
,Hrlmcv > hlmv\r.

Putting in the value of H, we obtain

Ar/r > (r^ — ~ 2-8 X 10~i^ cm.).

Now r must be greater than the radius of the atom if the effect is to

be observable. Thus we see that Ar is at least 20,000 times greater

than r. The observation is therefore impossible.

We can determine the moment of a single atom only by means of

a Stern-Gerlach experiment, and this experiment does not leave the

atom undisturbed. The Stem-Gerlach experiment proves that a hydro-

gen atom in a magnetic field H must acquire additional energy equal

either to ±:MH\ the experiment, further, can separate the atoms having

the two different energies. Since we have seen that the direction of the

magnetic moment cannot be measured, we must define the statement that

the magnetic moment of an atom points in the direction 1, where 1 is a unit

vector, as meaning that the atom has been passed through an inhomogeneous

magnetic field H in the direction 1, and that the atom was in the deflected

beam having energy --HM,
We must now ask in what respect an atom that has been prepared

in this way is different from any other atom. We wish to know whether

any predictions can be made about its future behaviour that could not

be made about an atom that had not been so prepared. We have seen

that the direction of its magnetic moment cannot be measured. We
can, however, put it through a second inhomogeneous magnetic field

H' in a new direction T, and observe whether the atom takes up energy
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:^H'M in this new field. From our knowledge of the way in which the

atom has been prejpared, it is possible to predict the probability that the

atom will take up either of these energies. In the special case where

1 and r refer to the same direction it is of course certain that the

energy will be —H'M. We shall now see how to calculate the probability

in the more general case. To do this we must express our results in the

notation of quantum mechanics.

We describe our knowledge of an atom whose magnetic moment has

been orientated in the direction 1 by a Stern-Gerlach experiment, by

a wave function

The argument s of the wave function must refer to what is observable

about the atom, namely, the energy that the atom would take up if

passed into a second inhomogeneous magnetic field. We take therefore

an arbitrary direction in space—say the 2-axis—and denote by H'Ms
the energy that the atom would have if passed into a magnetic field

H' in this direction. Then the probability that this energy will have

a given value is |x(«§)l^; we know that y must be zero unless .5 is ±1.

X therefore has only two non-zero values, x(+ 1 )
a-nd x(

—-
1 ) ;

the squares

of the moduh of these give the probabilities that the energy shall have

the values . It is clear that ’'viU depend only on the angle

between 1 and the 2-axis.

If 1 lies along the 2-axis, so that the energy is —MH, we have for x

(
1

)

x(+i)=-o
^

Let us denote this function by xp{^)- Similarly let Xa be the corre-

sponding function when 1 lies in the opposite direction, namely.

Xa(+1)= 1

Xa(-1) = 0
(2)

We note that Xa» Xp defined in this way are both normalized and are

orthogonal to each other.

The two wave functions Xa XjS describe the two stationary states

of the system—i.e. the two states in which the energy is known. The

general state of the system will be described by a wave function

^Xa+-®X/3>

t Unless the field changes so abruptly that the atom passes from H to in a time

small compared to the period of Larmor precession, no splitting will occur in the second

experiment. The exact condition has been investigated by Rosen and Zener, Phya. Rev.

40 (1932), 502.
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where A and B are arbitrary complex constants satisfying the nor-

malizing condition, AA^+BB^ = 1

It can be shownf by arguments depending on invariance with respect

to change of axes that if the atom is prepared with its magnetic moment
lying in a direction specified by spherical polar angles B,

<f>,
and if also

8 refers to energies in a magnetic field along the z-axis (B = 0), then

B/A = -cot (3)

and thus, neglecting an arbitrary phase,

A — —sin^B, B — cos

The probabihty, therefore, that the atom will take up energy —MH
in the new field is cos^J^, and that it will take up energy -{-MH is

sin^ \B.

The probability that the electron is at a given distance r from the

nucleus will be approximately the same as it would be if the atom

were not in a magnetic field, and will therefore be given by the square

of the Schr5dinger wave function

The complete wave function of the atom will therefore be the product

This wave function will, however, be only approximately correct,

because the charge distribution in an atom may well depend slightly

on the orientation of the spin in a magnetic field.

We can, however (more accurately), describe the atom by a wave

function
^(r,s) («=1,-1).

(
4
)

The interpretation of this wave function is as follows: the function

lt/f(r,8)l^ dxdt/dz (8= 1)

is the probability that the atom would have energy -{-MH in a magnetic

field along the 2:-axi8
,
and that the electron would be found in a volume

element dxdydz.

The form of the function can only be found by applying the

relativistic theory of the electron due to Dirac. It will be noticed that

it is immaterial whether we write the wave function in the form (4),

or whether we write two separate functions of r, ^^r

velocities of the electron much less than c, both and are approxi-

mately solutions of SchrOdinger’s equation.

I DircK;, Quantum Mechanu^j Ist edition, p. 132.
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2. Magnetic moment of the electron

We have discussed so far only the magnetic moment of the atom. We
shall not review here the evidence, derived from the anomalous Zeeman
effect, from the gyromagnetic effect, etc., that the electron has a fourth

degree of freedom, a magnetic moment elijiTTmc, and a mechanical

moment ^hj^rr. We shall content ourselves with remarking that accord-

ing to the Schrodinger theory the ground state of the hydrogen atom

is not degenerate, and therefore, in order to account for the splitting

in a magnetic field revealed by the Stern-Gerlach experiment, it is

necessary to assume that the electron has a fourth degree of freedom.

The present evidence that electrons have a magnetic moment is

derived from their behaviour when bound in stationary states in atoms.

For the study of collision problems it is necessary to inquire what

meaning can be attached to the magnetic moment of a free electron.

In the first place, just as in the case of the atom, it is impossible to

determine the moment by means of a magnetometer experiment. This

can be shown by the following argument, due to Bohr.f Let us suppose

that the position of the electron is known with an accuracy Ar and that

we wish to determine the magnetic moment at a point distant r from

it. It will not be possible to deduce from our measurement an5rfching

about the magnetic moment of the electron unless

Ar <€ r. (5)

The field H that we wish to observe will be of order of magnitude

H ~ Mjr^,

If, however, the electron is in motion with velocity v, there will be

a magnetic field due to its motion, of amount ev/cr^; since we do not

know V exactly we cannot allow for this field exactly. From our

measurements, therefore, of the magnetic field, it will not be possible

to find out anything about the magnetic moment of the electron, unless

Mjr^ > e^v/cr^,

where Av is the uncertainty in our knowledge of v. Since by the uncer-

tainty principle ArAv > him, this leads to

Ar > r,

which contradicts the inequality (5). We conclude therefore that it is

not possible to measure the magnetic moment of an electron in this

manner.

We shall now show that it is impossible, by means of a Stem-Grerlach

t Cf. Mott, Proc, Roy, Soc. A, 124 (1929), 440.
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experiment, to determine the magnetic moment of a free electron, or

to prepare a beam of electrons with the magnetic moments all pointing

in the same direction. The argument is also due to Bohr.

In Fig. 9 a beam of electrons is supposed to travel parallel to the

2-axi8 (i.e. perpendicular to the plane of the paper). The pole pieces of

the magnet are shown, as are also the lines of force. The purpose of the

experiment is to observe a splitting in the ^/-direction. The force on

an electron tending to split the beam will be

(6)

Now all electrons will experience a force due to their motion through

the field. Those moving in the plane Oyz will experience a force in the

direction Ox, This force is perpendicular to the direction ofthe splitting,

and its only effect will be to displace the beams to the right or to the

left. However, electrons which do not move in the plane Oyz will

experience a force in the direction Oy, because the lines of force in an

inhomogeneous magnetic field cannot be straight, and there must be

a component of H along Ox, This force will have magnitude

.vHJc. (7)

We can compare (7) with the force (6) tending to produce the splitting.

dff
Hg. at a point distant Ax from the plane Oyz will be equal to

ox



IV, § 2 MAGNETIC MOMENT OF THE ELECTRON 63

and since divJ? vanishes, this is equal to The quantities
dy

(6) and (7) therefore stand in the ratio

eh dHy eVdHy^
iTrmc dy c dy

Dividing through by common factors this becomes

l:47rAx/A, (^d)

where A is the wave-length hjinv of the waves that represent the

electrons. Suppose now that ±:Ax is the distance from the plane Oyz

of the two extremities of the beam. Since Ax must be greater than A,

it is clear that the two extremities of the beam will be deflected in

opposite directions through angles greater than the angle of splitting,

which we hope to observe.

To see now that it is impossible to observe any sphtting, let us con-

sider the trace that the beam would make on a photographic plate.

Suppose that it were possible to use finer beams than is allowed by the

uncertainty principle, so that the thickness Ay of the beam in the

y-direction would be infinitely small. Before passing through the mag-

netic field, the cross-section of the beam would be as in Fig. 10(a). After-

wards, it would be as in Fig. 10(6), which shows the trace produced on

a photographic plate. The tilting of the traces is produced by the

Lorentz forces discussed above. If ABC, A'B' are two lines parallel to

Oy and distant A apart, then by (7.1) we see that the tilting is so great

that A J? > BC, If A^y is drawn perpendicular to the traces, it follows

that Ap :> But Ap c X, and hence jSy, the distance between the

traces, is less than A. Thus the maximum separation that can be pro-

duced is A. But actually we cannot obtain a trace of breadth comparable

with A. Therefore it is impossible to observe any sphtting.

From these arguments we must conclude that it is meaningless to

assign to the free electron a magnetic moment. It is a property of the

electron that when it is bound in an S state in an atom, the atom has

a magnetic moment. When we consider the relativistic treatment of

the electron due to Dirac, we shall see that this magnetic moment is

not in general equal to ehliirmc, unless the velocities of the electron

within the atom are small compared with that of hght (§ 3.3). A single

electron bound in its lowest state in the field of a nucleus of charge Ze

gives, according to Dirac’s theory, a magnetic momentf

J[l-|~2>y/(l

—

y^y\€h/4:7Tmc {y = 27rZ€^lhc), (8)

t This formula is due to Breit, Nature^ 122 (1928), 649. Cf. § 3.3 of this chapter.
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The statement that a free electron has four degrees of freedom is on

a different footing, for it is hardly conceivable that an electron in an

atom should have four degrees of freedom, and a free electron three.

It is interesting to inquire, therefore, whether there is any conceivable

experiment by which this fourth degree of freedom could be detected.

Fig. 10(6),

We wish to know whether it is possible to prepare a beam of electrons

that is in some sense ‘polarized’, and whether it would be possible to

detect this polarization.

There is at present no certain experimental evidence on this point;

theoretical considerations show, however, that it is possible, in principle,

both to prepare a polarized beam and to detect the polarization. Let

us consider the following experiment.f A beam of atoms is prepared,

by means of a Stem-Gerlach experiment, with their axes all pointing

in the same direction, say along the ^-axis. Electrons are ejected from

t This method of preparing a polarized beam of electrons was first suggested by Fues
and HeUmann, Phya, Zeits. 31 (1930), 465.
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these atoms by illuminating them with ultra-violet light. The beam of

electrons obtained may be said to be polarized, for the following reasons:

Assuming for the moment that the electron behaves like a small magnet,

let us ask whether forces suflScient to eject the electron would be suffi-

cient to alter appreciably the direction of the magnetic moment. The
following purely classical considerations of the order of magnitude of

the forces involved show that they are not, and so we may consider

that the magnetic moments in the beam of ejected electrons all point

in the same direction.

t

If an electric field of intensity E acts on an electron for time t, the

kinetic energy acquired is The energy that must be given

to an electron to remove it from an atom is of order of magnitude

Thus to remove an electron from an atom the product of E and

t must be of order of magnitude Et ~ em/A. The average velocity of

an electron in an atom is e^/A. The average couple acting on the electron

magnet, due to its motion through the electric field E, will be of order

me h c

which is equal to E^^jmc^, To change the orientation of the electron

by an angle comparable with tt, this couple must produce a change of

angular momentum comparable with h. The time T necessary for this

to occur is given by p 3

mxr

which gives ET hme^je^.

We deduce that

Thus T >
It would, however, be meaningless to speak of a polarized beam,

unless the fact that the beam is polarized could be detected in some

way. This could be done if the beam were passed through a gas of

ionized atoms, so that some of the electrons were captured. If the

neutral atoms formed were shown by means of a Stem-Gerlach experi-

ment to be polarized, then we should have a method of detecting the

polarization. The argument used above about the order of magnitude

t There is, of course, a small probability that the direction of the spin-axis is reversed,

and the following discussions show this to be of order of magnitude (1/137)*. There is

no known method by means of which a completely polarized beam can be produced.

36»6.e7 F
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of the forces involved indicates that this should be the case; a proper

proof can, however, be given on the basis of Dirac’s theory of the

electron.

Another less direct but possibly more practical method of preparing

and of detecting a polarized beam is discussed in § 4.1.

We see, then, that the spin of a free electron may be described by

the same wave function xM used before to describe the

magnetic moment of an atom. The function

bWl* {s=±l)

gives the probability that, if the electron is prepared with its magnetic

moment in the direction 1, then, if the electron be captured by an atom,

and if that atom be passed into an inhomogeneous magnetic field, the

energy of that atom will be either It is necessary to give to the

square of the amplitude of the wave function this rather complicated

interpretation, because it is not possible to measure the energy of an

electron in a magnetic field, unless the electron is captured in an atom.

It is further to be noted that, by the statement that an electron is

prepared with its magnetic moment in a given direction, it is meant

that the electron has been knocked off an atom that has been so

prepared.

As in the case of the bound electron, an electron is completely

described by a wave function

^(r,s).

If the forces acting on the electron are so small that thf' direction of

the spin remains constant throughout the experiment considered, then

as before this function may be split up into the product

when ^(r) is a solution of SchrOdinger’s equation. The form of ^(r, s)

when this is not the case can be found from Dirac’s theory.

3. The relativistic wave equation

As is well known, Dirac has been able to show that it is impossible

to find a wave equation for an electron that is invariant with respect to

a Lorentz transformation, and which is linear in the time differential,

unless the electron be assumed to have a fourth degree of freedom. If

one assumes this, it can be deduced that a hydrogen atom has a mag-
netic moment of the observed magnitude, without any further special

assumptions. An understanding of the elements of Dirac’s theory is
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essential to the further development of our subject, and we shall there-

fore give an outline of it here.

According to this theory the electron is described by four wave

funoUons
U^.y.z.t) (A =1,2, 3, 4).

The probability that an electron will be in a volume-element dr at

time ^ is 4

j, (
9
)

A“1

The four functions ipx satisfy the simultaneous differential equationsf

{po+mc)^i+(Pi—ip2)>Pt+P3'/>3 == 0

{po+mc),l,^+{Pi+ipz)tl>3-P3'Pi = 0

{Po—'>nc)>p3+{Pi—iPi)4>2+P3>Pi = 0

{Po-'>nc)^i+{Pi+Wi)'Pi-P34'2 = 0
,

(
10

)

where

Po ^ 1 ^
27ri C dt C

^

h d
. €j4i

Pi = etc.
27n dx c

V and A are scalar and vector potentials. We have to show that these

equations describe an electron having the properties outlined in the

preceding section.

We first note that if we wish to find a periodic solution, Pq must be

replaced by [W~\-€V)ICj W being the energy of the electron. Secondly,

if we assume that the velocity of the electron is small compared with

that of light, so that

W—mc^ W-\-mc^,

then it is easy to see that ^3 , ^4 both satisfy SchrOdinger’s equation.

Further, if ^ is any solution of SchrOdinger’s equation, an approximate

solution of
(
10

)
is

== —{B{p^—ip^)+Ap^}xljl2mc

^2 = -{A(pi+iP2)-Bpa}<P/^mc.

A and B are arbitrary constants, and p^, p^, Ps Q'^e to be interpreted

as operators. It is clear that ^4 ,
much smaller than ^3 , ^4 and

can be neglected in the expression (9) for the charge density. Thus, if

t Darwin, Froc. Roy, Soc, A, 118 (1928). 654.
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(9) is normalized to unity, and if we wish our four functions to be

normalized also, we must have to this approximation

AA*+BB* = 1.

We wish to know, now, whether the solution of the equations (10)

describes an electron with the spin properties that electrons are observed

to have. It is known that the ground state of the hydrogen atom is

degenerate, and that the energy splits into two in a magnetic field.

We have to see whether this behaviour is predicted by the theory.

We see at once that the ground state is degenerate, the constants

A and B being arbitrary. To find out what happens in a magnetic

field we must solve the equations (10) for an electron in the field of

a nucleus and in a magnetic field H. We shall find that the degeneracy

is then removed. If the magnetic field is along the 2:-axi8 ,
then one

solution is given by (11) with

= 0, B = 1.

This solution has energy Wq—MI1, We denote this solution by The

other solution has energy Wq+MH and is given by (11) with

A = I, B = 0.

This is shown in § 4.

If the magnetic field does not lie along the z-axis, then the two solu-

tions may either be found directly as above, or from a consideration

of the way in which the functions transform under a change of axes.!

If the direction of the magnetic field is given by the polar angles 0,

then the solution with energy Wq—MH is given by (11) with

A == —sin B —

The solution is therefore Ai/j\+Bi/r^.

This therefore is the wave function that describes an atom prepared

with its magnetic moment pointing in the direction 0, <f>.
If the atom

were then placed in a magnetic field along the z-axis, then clearly \A\^

would give the probability that the atom should take up energy +MH,
and

I

Bp the probability that it should take up energy —MH.
We have now shown that for slow electrons the Dirac treatment

becomes identical with the non-relativistic Pauli-Darwin treatment. It

is convenient to summarize here the two notations. In the Pauli-Darwin

treatment an electron prepared with its axis in the direction 1 (polar

angles ^) is described by a wave function

t Cf. Darwin, loc. cit.
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i[/ is the ordinary solution of Schr5dinger’s equation; HMs is the energy

that the electron would have due to a magnetic field H along the z-axis.

X vanishes unless 5 == 1 and then

X — e^^co&^d [s = — 1
),

X=-sin |0 {s=+l).

In Dirac’s notation the electron is described by a wave function

2, 3, 4).

and 02 negligible for slow electrons; 03 and 04 are multiples of

^3=-sin|%

0^
= cos |00 .

dxdydz gives the probability that the electron is in the volume-

element dxdydz, and that the electron magnet would have energy ~MH
in a magnetic field.

The fact that for slow electrons each of the functions 03 and 04 is

approximately a solution of Schrddinger’s equation provides a proof of

the assumption made in § 2
,
that an electron can be ejected from one

atom and captured by another atom without losing its spin direction.

The spin direction will not in general change much unless the forces

acting on the electron are such as to give it a velocity comparable with

that of light.

3.1. Treatment of the equations when the velocity of the electrons is

comparable with that of light

The exact solution of the equations
(
10

)
representing an electron

moving in free space with momentum energy W has

been given by Darwin,f and is

mc+Wlc ’ mc+Wlc ’

^3 = = BS, (12)

urz

where Pi+iJi+pl =—

—

c

Here S denotes exp(27ri(piX-{-p2P-hP3Z—^^)/^}> A and B are

arbitrary constants. The number of electrons per unit volume described

by this solution is

(AA*+BB*)2W/(W+mc^).

We must now ask what relationship the constants A and H in
(
12

)
have

t Loc. cit.
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to the direction of the spin axis. We have seen that for the case vjc 1

this direction is given by the polar angles d, <^, where

-BjA - ootiee^^, (13)

For a fast electron, however, we have yet to define what is meant by

the direction of the spin axis—i.e. how it could be measured.

Two methods are possible; we may either suppose that the 'observer’

is moving with the electron, and inquire in what direction the spin of

the electron is pointing relative to his axes; or we may suppose that

the electron is brought nearly to rest by an electric field, and inquire

what the direction of its spin axis is then. The first question has been

considered by Darwin, f who finds that equation (13) defines the direc-

tion of the spin axis relative to the moving observer. The second,

however, is the method by which the spin might be observed in practice;

we find that equation (13) defines the direction of the spin when the

electron has been reduced to rest. This may be seen as follows.

We confine ourselves to the case of an electron moving parallel to

the z-axis, there being also an electrostatic field in this direction. The

equations (10) reduce to two equations in and two equations in

01, 03. Eliminating 02 between the first two of these, we obtain

27ri(W+eV

h \ c

ar h iw+eV
dz 27ri\ c

= 0

and 03 satisfies exactly the same equation. Thus, since 03 and 04 both

satisfy the same boundary conditions, it follows that

0^/0^ = const.

Hence, as the velocity of the election decreases, the ratio BJA does not

change. Thus (13) gives the direction of the spin axis when the electrons

are brought to rest by the field.

3.2. Nature of an unpolarized beam

A slow unpolarized beam is one in which the electron spins point in

all directions at random. It is not possible to represent an unpolarized

beam by a single wave; each electron must be given its separate wave
function, with different values of the constants A and B.

A fast unpolarized beam is the beam produced from a slow beam
by accelerating it by means of an electric field. It follows from the

results of the last section that such a beam would appear unpolarized

to a moving observer relative to whom the electrons were at rest.

We shall now show that a beam in which half the electrons have

t Proc. Boy. Soc. A, 120 (1928), 628, § 6.
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been prepared with their axes pointing in a given direction, and the

other half with their axes pointing in the opposite direction^ behaves

like an nnpolarized beam. To make the discussion definite we shall

suppose that a beam of electrons travelling in the direction

passes into any electromagnetic field. The beam will be represented by

a wave function i/jx{x, y, 2)exp{— 27TiWtjh). In the part of space where the

beam is before passing into the field, ipx must have the form of a plane

wave, moving in the direction {l,m,n) and polarized in some definite

direction. Let (X, Y, Z) be some point in space where the beam arrives

after it has passed the field, so that

A

gives the probability that an electron will be found at this point. We
have to show that if P be averaged over all initial directions of the

spin axis, the same result is obtained as by taking the average value

of P for two opposite directions.

In the last section it was shown that a plane wave in which the spin

axis points along the 2-axis is represented by

^3 = 4’i—

and that a plane wave in which the spin axis points in the opposite

direction is represented by

As — = 0-

Let ifi]^ be the wave functions which have these forms in the part

of space occupied by the incident wave. Then the wave function which

describes an electron with spin initially in the direction {6, <f>)
is

Thus
-sin cos

P = sin* J^8indco8{<l>+oix)Dx,
A

where we write ~

If we take the opposite direction to 0, </), namely.

we obtain

TT— 0,

P = 008^^0^ |0J|2-fsin2^0

The mean of these is J ^
Clearly the same result is obtained if P is averaged over all 0, <f>.

I l-A?l
'+ ^sin0cos(^+a;^)P;^.
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3 .3 . The magnetic moment of an atom according to Dirac ^

8

equation

Our purpose in this section is to show that an electron in the lowest

quantum state, in the field of a nucleus of charge Zc, and a magnetic

field H along the s-axis, has energy, according to Dirac’s equation,

W,±HM,

where is the energy in the absence of a field, and

^ + ^ 2^ZeVAc).

It will further be shown that, when the atom is in the state with energy

-—HM (spin pointing along the 2:-axis), the wave function 0;^
describing

the electron is such that ^3 == 0.

The wave equation for the electron is (cf. equation 10)

3

^

W+eV

where W is the energy, are the usual matrices, V == Ze/r, and

is given by A2 == \Hx, 0 .

One can thus write the wave equation

(IT+cF—

i

7+c 2 = 0,

where TJ is the perturbing energy due to the magnetic field, namely,

JJ = - ^{a^A^+a^A^,

For the case H — Q the lowest state is degenerate. There are two

solutions, which we denote by and If we write

/(r) = Ar^e~^^°',

where — (
1 __ j ^

and A is so chosen that
00

J
dr = I,

0

then these solutions, normalized to unity, aref

,(,1
= iNB Bin ee*^f '

>/fl= —iNB COB 0f

^1 = 0

•l>l
= Nf J

t Darwin, Proc. Roy. Soc, A, 118 (1928), 654,
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i/jY == —iNB COS 6f

xfs^ = —iNBsinOe^^f

where B = y[l+{l~“y^)*]'‘^, „ 2

It is easily seen that
J

dxdydz = 0.

For the energy values in a magnetic field we solve by the usual per-

turbation method. If therefore A IF is the change of energy produced

by the field, we obtain

where = J
dxdydz^ etc.

It is easily seen that the non-diagonal elements vanish; thus \js^

and 0II are the correct zero-order wave functions, and is the

change of energy when the atom is in the state described by the wave

function ifP-.

We shall evaluate We have

= 2N^B sin 9 sin

Hence = €HN^Bsm^dsin^(f>rf^.

Similarly, we find that

= eHN^B sinWcos^rJ\

Thus, adding and integrating over all space, we have

27r TT 00

f7ii.n == j d<f> j
sine dd

j
drsinWrp.

0 0 0

Evaluating this integral, we obtain

which is the change of energy due to H when the atom is in the state

II. Similarly we find that is equal to minus the same quantity.

The factor J[2( 1— 2] tends to 1 as y -> 0. For uranium it is 0-83.
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4. The scattering of electrons by a centre of force

We now consider the way in which the discussion of Chapter II must

be modified when the motion of the particles concerned is determined

by Dirac’s equations instead of the Schr5dingcr equation.

The wave function ifj describing the scattering now has four compo-

nents which have the asymptotic forms

The differential cross-section dco is now given by

m4>)da>^[pu,ie,<f>)\^l2 (16)

The quantities are not all independent. Referring to the solutions

(12) for a plane wave, it will be seen that, w^hen ~ 2^2 “
(Xj l\,hC/ ^2

% W
no matter w^hat orientation the spin axis may have. The same relation

exists between the ux for, asymptotically, the scattered wave may be

regarded as made up of a number of plane w aves proceeding outward

from the centre in different directions. We may therefore write

1(6, (j)) dco
l«3P+|a4p

dco. (17)

In practice the incident electron beam will normally be unpolarized.

As such a beam may be regarded as made up of equal numbers of

electrons with spins respectively parallel and antiparallel to the direc-

tion of propagation, we first consider the scattering in these two par-

ticular cases. The asymptotic forms of the components ^3, are

^3 ~ r-V*'fif2(0,^)
I

^4 ~ -^) /

for the two cases, (B) referring to electrons with spins parallel and (A)

with spins antiparallel, to the direction of incidence. To obtain the

functions /g, gi, use may be made of the sets of solutions found

by Darwinf of the equations (10) with the scalar scattering potential V
a function of r only and the vector potential zero. He gives the groups

of solutions

t Proc. Boy. Soc. A, 118 (1928), 654.
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^3 = (w+ jP„(cos e), — G„ Pi(cos 6
)
e^

•Aa
= P„(cos 6), ^4 = Pi(cos 6>)e‘^

^3 = O^Pl{coBd)e^<l’, = (n+l)(?„P„(cos0)

•Aa
= - P‘(cos e)e’l‘, ^4 = P„(cos 6f)

where is a solution of the simultaneous equations

dG„, n _

(A)

(B)

76

(19)

(
20

)

and is a solution of a similar pair of equations with —n~\ in

place of n.

By elimination of the function we have

where

The substitution

HW eF
, \ . 1/lf eV \

G,. = "‘sy--

brings the equation into the SchrOdinger form
(
12

)
of Chapter II, viz.

with

dr^

Un{r) = 2lf 1 eW^ n+\a 3 a'2 1 a'

+*2 c2 + r 4 a2+2 a’

F = (lf2-m2c«)/Pc*.

(
22

)

(23)

A similar result follows for with — 7^~l in place of n.

Of the terms appearing in the expression (23) for U^{r) the first two

are independent of the electron spin and are typical of the Klein-Gordon

equation for a particle without spin. The remaining terms are a conse-

quence of spin-orbit interaction and depend, not only on the potential,

but also on the force and its radial derivative.

It follows that the proper solutions taken to

have the asymptotic forms

^ r-^^m{kr~-\n7T+y]^),

~ r-isin(A;r— iwTr+tj-n-i).
(
24

)
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By combining the solutions (19 A) in the following way we obtain

functions ^3, ^4 having the asymptotic forms (18 A):

^3=2 {(M+lK’’"G<„+we<^-»->G<_„_i}i"P„(cos0),
n-0

= {— 'G'_„_i}i”Pi(cos
n=*l

(26)

Prom these we have

9l(^> ^2 {—
(26)

By comparison with (17) of Chapter II we see that the non-relativistic

case is obtained by taking “ V-n-v
For the case (B) of parallel spin we find, by a similar procedure, that

f2{^, 4) = /i(^> 4>) = /(^). say,

and that — —p(^)c“^‘^>

where gi{e,<f>) — g{d)e^'l‘. (27)

The general case of arbitrary initial spin direction for which the

incident wave is given by

03 == 04 =
may now be obtained by linear combination, to give

«3 = Af—Bge-^^,

«4 = Bf+Age^’t‘,

SO that

m = (28)

4.1. Polarization

Referring to (28) we see that the scattering of a partially polarized

beam depends, not only on 0, but also on 0. Thus, in Fig. 11, the

intensity scattered in the direction CD would not be the same as in

the direction CE. An effect of this sort would be observed in a double

scattering experiment as follows. Referring to Fig. 11, an unpolarized

beam of electrons is incident on a target B. That portion which is

scattered in the direction BG is incident on a second target C, This

scattered beam is partially polarized by the scattering at B, for electrons

with spins parallel and antiparallel are not in general affected in the
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same way by the scattering field. As a result those beams which suffer

a second scattering into the directions CD, GE respectively, both

making the same angle 0^ with BC, will not be of equal intensity.

The detailed theory of such a double scattering experiment was first

worked out by Mott.f We consider, as usual, the incident unpolarized

beam as made up of equal numbers of electrons with spins parallel and

antiparallel to the direction of incidence.

A

For those electrons with spins antiparallel we have, in the incident

= 04 = 0 , AA* = \.

After the first scattering through an angle 6^, in the plane = 0 (the

plane of ABC in Fig. 11) the components of the wave function will be

proportional to A/i(0i), We now rotate the axes through an

angle 6-^, so that the 2:-axis is along BC, ABO remaining the plane

^ == 0. The components of the scattered beam, referred to these new

axes, become, apart from the term and a constant factor,

03 = A{fy COS sin 04 = A(ffi cos /i sin i9i). (29)

Substituting these values in place of A and B respectively in (28), we
obtain the intensity of the second scattering. In the same

way we may obtain the contribution from the electrons in the incident

beam with spins parallel to the incident direction. Adding the two

t Proc. Roy. Soc. A, 124 (1929), 426 and 135 (1932), 429.
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gives for the intensity scattered in the direction

l*+ Wi) P+ Wz) ?+2D{d^)D(e^)0OB (30)

where D{d) = i{fg*—gf*).

This formula shows that, for a fixed value of 6-^ and the scattered

intensity depends on <}>^ through the factor

1+Scos ^2 >

where mme,)
(31)

When D[d) — 0 the effect vanishes. In this case all the initial spin

directions are rotated through the same angle by the scattering so that

an unpolarized beam remains unpolarized.

In general the asymmetry will be small when D[d) is small, although

it may have isolated large values under special conditions for which the

denominator is very small. D{6) will be small, in general, when g is

small, i.e. in the non-relativistic limit. Referring to (26, 27) we see that

S'
= — i2 ^)sin Xn (32)

n

where Xn = Vn—n-n-i^ 2S„ = r/^+TJ-n-i-

The phases V-n-i determined from the equation (22) for and

the corresponding one for These differ in one term only, that

involving r~^(xl(x, which appears multiplied by n+1 and by —n for

respectively. As a' is proportional to dVjdr we see that the phase

differences, Xn^ hence the function D{d) and the asymmetry, are

determined by the force rather than by the potential of the scattering

centre.

4.2. The case of the Coulomb field

We now consider the scattering of fast electrons by an unshielded

atomic nucleus of charge Ze so that F = —Ze/r. As for the non-

relativistic case discussed in Chapter III, the slow decrease of this

potential with distance modifies the asymptotic form of the functions

On, 0_n-v The formulae (26) and (27) still hold with the phases

rjn, r)^n-i that

<?„ _„_i r-i sin(fo-+ylog 2ir-|n7r+ij„_„_,), (33)

where y = 27rZ€^lhv.
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Writing

The equations (20) for Cr_n-i> take the form

Wntmg / w V 1

rO-.-, = +
we have then / .a

• (w—

+

M ^+ ~)^2>

where , /, 47r2/TF2
2 2\

Expanding a^, org in the power series

cTj = ^2 = 2
we find that the regular solutions are expressible in the form

ay = aoe-**’'rP*i’(iy+/3„,2p„+l,2iA:r),

ajj = bae-i>^rPnF{iy+p,,+ l,2p,,+ l,2ikr),

where

^ == ^y~Pn
bn iy'—n P. = y- = 27TZ€^lhc.

This gives

== N_^_^{2kr)P*r-^e-^^X

X {

—

(n— iy)F[iy-]rpn~\~^y 2ikr)~{-

Mpn-iy)nPn+iy, 2/5n+l. 2*^0}, (35)

where iVL^_i is a constant. Using the asymptotic expressions given in

Chap. Ill, § 3, for the hypergeometric functions, we find that

O-n-x ~ r-isin(^r+ylog2i:r~-Jn7r4-97^„_i), (36)

where

exp(2i7j_„_i) = exp{-7ri(p„-?J')},t (37)
Pn—^y ^Pn+^+^y)

the constant being then given by

t Note that exp(2»77„) is obtained from (37) by replacing n by —n—1 everywhere

except in the last factor which becomes exp{— n)}.



80 THE SPIN OF THE ELECTRON IV, §4

Writing
—g—iwpii r(Pn—^y)

(39)

(40)

^Pn+l+iy)’

G{e) = ii2(-l)”KC'„-(n+l)*C'„^i}P„(co8 0),

we now have, on substitution of (37) and the corresponding expression

for exp(2i7^^) in (26) and (27),

kf(e) == -iyF+G,

kg(6) — [iy'(l+cos0)JP+(l“Cos0)6?]/sin0.

The differential cross-section is, then,

I/IHI^I* = y'*“|P|2/{PsinH0)+lG<P/(Pco840). (41)

Closed expressions for F and O cannot be obtained, but they may be

expanded in powers of a to give an expression, valid for scattering by

light elements since a == Z/137.

In the limit y' = y, = 0 we must recover the case of scattering by

a Coulomb field when spin and relativistic effects are ignored. Referring

to Chap. Ill (16) it follows that, in this case,

kf(6) -> jR cosec^ g[6) -> 0,

where
r pn iy\B = iy exp 2iy logsin ^0+ arg

p|yq:^j
+ *

Hence, if we expand F and O in powers of a,

F = Fo+ocF^+a^F^+..„

O = OQ-{-aO^+o(^0^+..,,

we must have, from (40), when y' = y,

Fq = iBjy, R cot^

Since F and G do not contain y, we obtain, on substitution in (41),

the differential cross-section

sin^ ^6
(42)

which is valid for all values of v, provided a is small compared with

unity.

To this approximation the Rutherford scattering formula must be

multiplied by (

1

—v^lc^){l— (v^jc^) sin^ ^0}, the first factor arising from the

Lorentz contraction, the second from the effect of the spin. As, accord-

ing to this approximation, both/and g are real, apart from the common
phase factor exp(2iy logsin* ^0), no aisymmetry would be observed on



Fig. 12. Angular distributions of electrons and of positrons of various energies scattered
by mercury nuclei. The scattered intensity is given as the ratio r to that given by the
formula

^ cosec^ l—v^lc^).

Curves I-IX respectively correspond to particles of energies 0 046, 0-086, 0-145, 0-232,

0-314, 0-463, 0-666, 1-28, and 3-35 mcK
Curve 0 is that given by the approximate formula (42) for an energy of 3-367?ic*.

12(a) electrons; 12(&) positrons.

3595.67 a
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double scattering. To obtain a finite value for the quantity 8 of (31)

it is necessary to proceed to the next approximation. This has been

done by Mott,t who finds that, for = — 90°,

\137/ {2-(t;2/c2)}2
(43)

having a minimum value of 0-2(Z/ 137)2 for vjc = 0-81. To the same

approximation the differential cross>section (17) includes the factor

J

sin2|0-f OL

V

c

in place of -sin2

For scattering by heavy elements ZjVM is not small and the approxi-

mate expressions (42) and (43) are no longer valid. Numerical values

for the differential cross-section and the asymmetry factor were first

obtained from the exact expressions (40) by Mott.§ In 1932 he evaluated

8 as a function of vjc for double scattering at 90° b}^ gold nuclei and also

gave the differential cross-sections for single scattering at this angle.

Bartlett and Watson
||
have since carried out calculations for mercury

nuclei from which they give the differential cross-sections as a function

of vjc for single scattering at 90°. Fig. 12(a) illustrates their results for

the single scattering cross-sections. It is convenient to give these in

terms of the ratio r of the scattering to that given by the Rutherford

formula
Z^€^

cosec^ ^d{l~v^lc%

modified to allow only for the variation of mass with velocity. It will

be seen that the approximate expression
{
1— (t72/c2)sin2 ^0}, given by (42)

for r, is very inaccurate for heavy elements.

The variation of the asymmetry factor 8 with electron velocity as

found by Mott and by Bartlett and Watson is illustrated in Fig. 13.

It will be seen that for vjc in the neighbourhood of 0*6 a considerable

effect should be observed in a double scattering experiment. Although

these results have been derived on the assumption of scattering by a

bare nucleus, it has been shownff that the effect of screening by the

atomic electrons does not seriously affect the predicted value of 8.

t Proc, Roy, Soc. A, 124 (1929), 425.

t Urban, Zeita.f, Physik, 119 (1942), 67.

§ Proc. Roy. Soc. A, 135 (1932), 429.

)|
Proc. Am. Acad. Art. Sci. 74 (1940), 53.

tt Massey and Mohr, Proc. Roy. Soc. A, 177 (1941), 341 ; Bartlett and Welton, Phya.

Rev. 59 (1941). 281.



IV, §4 SCATTERING OF ELECTRONS BY A CENTRE OF FORCE 83

Fig. 13. rerccntage aaynimotry in double scattering

of electrons at 90^ by mercury nuclei.

4.3. Comparison with experiment

Although it cannot yet be said that the relativistic theory of scattering

of fast electrons by atomic nuclei has been confirmed in detail by
experiment, the most recent observations are in good agreement with

its predictions.

The most recent experiment on single scattering of fast electrons are

those of Bueckner, van der Graaf, and Feshbach.t They used cathode

rays of energies ranging from 1-27 to 2*27 M.e.V. and measured the

absolute intensity of scattering over an angular range from 20° to 50°.

This was found to be in very good agreement with theoretical prediction

for the scattering materials investigated—beryllium, aluminium, copper,

silver, platinum, and gold. The results obtained prior to 1942 have been

summarized by Urban. J They present a rather confused picture. Thus,

good agreement with the theory has been found by Champion and

Barber§ for the scattering of RaE ^-rays (0*7-1 -2 M.e.V. energy), by

Fowler and Oppenheimer|| for 5*0-17 M.e.V. ^-rays scattered by lead,

by Saunderson and Duffendackft for j8-rays scattered by copper,

argon, and gold, by GuptaJJ for 2 M.e.V. j8-rays scattered by xenon,

and by Brailovsky and Leipunsky§§ for RaC ^-rays scattered by

argon. On the other hand. Champion and Barber§ found only l/7th

of the theoretical intensity for scattering of RaE ^-rays by mercury,

although the angular distribution was as predicted, and other investi-

( Phys. Bev. 69 (1946), 452. See also Bueckner, van der Graaf, Sperduto, Burrill, and
Feshbaoh, ibid. 72 (1947), 678.

t Zeits.f. Phyaik, 119 (1942), 67.

§ Proe. Boy. Soc. A, 168 (1938), 169; Phy.<). Bev. 55 (1939), 111.

II
Ibid. 54 (1938), 320. tt Ibid. 60 (1941), 190.

tt Proc. Phys. Hoc. 51 (1939), 365. §§ J. Phys. U.S.S.B. 4 (1941), 486.
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gators have found ratios ofobserved to theoretical intensities for scatter-

iiig by nitrogen ranging from 0*5 to O.f Some discrepancies have also

been found in some recent experiments using jS-rays.J The internal

consistency of all the experimental results using j8-rays is not good and
it is likely that the discrepancies will largely disappear when radio-

active sources are replaced by artificial ones of controlled energy, as in

the experiments of van der Graaf and others mentioned above. It must
be mentioned, however, that in some experiments the inelastic scattering

and the probability of pair formation by fast electrons§ also exhibit

Fig. 14. Illustrating scattering at 90° by a foil in the ‘reflection’

and ‘ transmission ’ ceises (a) and (b) respectively.

marked anomalies. More experiments are therefore required either to

establish the theory once and for all or to reveal definitely the nature

of any discrepancies.

Several attempts
||
have been made to verify the predicted asymmetry

in double scattering of electrons by gold nuclei. Until the work of Shull,

Chase, and Myerstt these attempts were all unsuccessful. It is, of course,

essential that, to reveal the asymmetry, the depolarizing effect of

multiple scattering be avoided. Although the gold foils used as scat-

terers by Dymond and by Richter were thin enough for it to be possible

to neglect multiple scattering involving a number of small deflexions,

it appears that the probability ofdeflexion through 90® by two successive

deflexions of comparable magnitude was not sufficiently small. This

effect^J is only marked when the electrons are scattered from the ‘reflect-

ing’ side of the foil (case (a) in Fig. 14). In this case an electron deviated

through 45® moves through the foil nearly parallel to its length and

t Stepanowa, Pfiys. Zeit. Sow. Un. 12 (1937), 550; Bothe and Ratzel, Zeits.f. Physik,
115 (1940), 497 ; Bosshard and Scherrer, Helv. Phy. Acta^ 14 (1941), 86.

t Bleuler, Scherrer, and Ziinti, Phya. Rev. 61 (1942), 95; Blouler, Helv. Phy. Acta, 15
(1942), 613; du Pasquier, ibid. 17 (1944), 409; Sigrist, ibid. 16 (1943), 471.

§ See a summary by Champion, Rep. Prog. Phyaica, 5 (1939), 348.

II
Meyers, Byrne, and Cox, Phya. Rev. 46 (1943), 77 ; Dymond, Proc. Roy. Soc. A. 145

(1934), 657 ; Richter, Ann. d. Phyaik, 28 (1937), 633 ; Hikuchi, Proc, Math. Phya, Soc, Jap.
22 (1940), 805. The last author obtained results in agreement with theory, but he used
such thick scatterers that multiple scattering must have been serious.

ft Phya. Rev. 63 (1943), 29.

it Chase and Cox, ibid. 58 (1940), 243; Ooertzel and Cox, ibid. 63 (1943), 37;
Petukhov and Vyshinsky, J. Phya. U.S.S.R. 5 (1941), 137.



IV, §4 SCATTERING OF ELECTRONS BY A CENTRE OF FORCE 86

therefore has a considerable chance of suffering a second deviation

through 45°. On the other hand, in the "transmission’ case (6) of Fig. 14,

either the first or second deviation must be through 135° and is very

much less likely.

Dymond and Richter both observed scattering through angles of 90°

from the reflecting sides of the foils for which the effect would be

important. Shull, Chase, and Meyers confirmed the absence of an

appreciable asymmetry under these conditions but observed, for the

400 k.e.V. beam of electrons they were using, a value for 200S of 12^30*2

when the two defiexions were of the transmission type. This agrees

very well with the calculated value, as may be seen by reference to

Fig. 13. Shull, Chase, and Meyers also checked that replacement of one

of the gold foils by aluminium reduced the asymmetry very consider-

ably, as would be expected.

On the whole, the evidence is thus in favour of the theory. Some

further favourable evidence as far as small angle scattering is concerned

will be discussed in Chap. IX, § 6, in connexion with multiple scattering.

5, The positron

In § 3.1 a set of solutions (12) representing an electron moving in free

space with momentum (pj, p^ and energy W have been given.

These are of the form

*Aa 1
,
2

,
3 , 4 ),

where Pl+Pl+Pl - m?c^. (44)

We have assumed the energy W to be positive, but there is nothing in

the formalism which requires this. W must satisfy the relativistic

momentum-energy relation (44). This gives

W = ±c{p\+pl+pl—mH^f,

and we have so far considered only the first of two alternatives,

second gives

>i>x = 6Aexp|^{Pia:+2>2y+P32+Jf<| (A = 1,2, 3, 4),

with
by=C, *2 = D,

Cp^+D{Pi—ipz)
® mc-{-Wjc ’

The

_ C{pi-^ipi)-Dpz
‘ 'mc+IF/c

(45)
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This set of solutions corresponds to free electrons of negative kinetic

energy, i.e. electrons of negative rest-mass.

Unless there are conditions which render these states inaccessible,

electrons will tend to fall into them with release of energy in the form

of radiation or kinetic energy ofsome other particle. On the other hand,

no electrons of negative mass have ever been observed. To overcome

this difficulty Dirac, f in 1930, suggested that all the states in which an

electron possesses negative mass are already occupied by electrons,

forming a distribution which is not observable because of its uniformity.

Only ‘holes’ in the distribution, representing departures from uniformity,

would be observed. Since the Pauli principle prevents two electrons

from occup^dng the same quantum state, this theory successfully

accounted for the failure of electrons with negative mass to appear in

nature and also for the normal absence of transitions to these states.

Furthermore, a vacant state in the distribution of negative mass elec-

trons would appear as a particle with positive mass and positive charge.

It was first suggested that this particle might be the proton, but

OppenheimerJ in 1930 showed that its mass must be equal to that of

a normal electron. Such particles were first observed by Anderson in

1932§ among the secondary particles produced by cosmic rays, a result

confirmed a short time later by Blackett and Occhialini.y They are

called positrons.

The Dirac equations for a positron may be obtained from those for

an electron by a simple transformation. Suppose that, referring to the

equations (10), the equations for an electron of positive mass are

obtained by substituting == [Wlc)~\-(eVjc). The corresponding equa-

tions for an electron of negative mass will then be obtained by replacing

Wjc by —Wjc. If we write in these equations 1F+ = IF,

pt = Pz = —Pz^ obtain

— = 0 ,

-+ '>ncjtl>3+{pi-—iP2}>/>2+P3'/>i = 0
,

fW+ fV \

~+ mcji/,t+{p++ip+),l,i-p+4,^ = 0 .

t Proc. Boy. Soc. A, 133 (1931), 80. t Phys. Rev. 35 (1930), 939.

§ Ibid. 41 (1932), 405:43(1933), 491.
1|

Proc. iJoy. Soc. A, 139 (1933), 699.
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These are of exactly the same form as for an electron of positive mass
and energy except that the potential energy function is changed

from — e F/c to + e F/c and the functions 0^, tjj^ are interchanged with ^3, ifj^

respectively. They correspond in fact to a particle with z-component

of spin of mass m, and charge 4-^*

The scattering of positrons by a static field of force as, for example,

the Coulomb field of a bare atomic nucleus, may be treated in exactly

the same way as that described in § 4 for electrons, the only difference

being the change of sign of the potential energy. A positron, however,

represents also a vacant electronic state and under certain conditions

an electron may make a transition to this state, leading to the annihila-

tion of both electron and positron. The inverse process in which an

electron, in an unobservable state with negative mass, absorbs sufficient

energy to raise it to an unoccupied level with positive mass, leads to

apparent creation of a pair, e.g. an electron and positron, the positron

being the manifestation of the vacant state of negative mass left by the

transition. In calculating the probability of such transitions it is best

to consider them as the transitions of an electron between electronic

states, with the condition that the energy and momentum of the positron

are equal and opposite to that of an electron in the state of negative

mass.

Some further remarks about the creation and annihilation of electron-

positron pairs are made in Chapter XV. We confine ourselves in this

chapter to problems involving single particles only.

5.1. The scattering of fast positrons by a Coulomb field

The formula of § 4 may be appUed to positrons by changing Ze to

— Ze. This makes no difference to the scattering to the approximation

(42), but, when Z/137 is not small compared with unity, it introduces

very considerable modifications. These have been worked out in detail

by Masseyt for scattering by mercury nuclei, using the calculations of

Bartlett and WeltonJ for electrons as a basis. His results are illustrated

in Fig. 12(6) in the form of the angular variation of the ratio r to the

Rutherford scattering, for various values of v/c. These may be compared

directly with the corresponding results for electrons and it will be seen

that they are quite different. At present there are no experimental

results available against which to check the theory.

t Ibid. A. 181 (1942), 14. X Loc. cit., § 4.2.
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COLLISIONS BETWEEN TWO PARTICLES:
NON-RELATIVISTIC THEORY

1. Introduction

In the first three chapters of this book we have discussed the motion of

beams of electrons in various fields. If one assumes that the individual

electrons of the beam do not interact with one another, the behaviour

of the beam can be described by a wave function y, z, t) in three-

dimensional space, dxdydz giving the probability that an electron

will be found, at time ty in the volume-element dxdydz. When we wish

to discuss atomic systems in which it is necessary to take into account

the interaction between two or more particles, this is no longer possible;

a wave function which is a function of the coordinates of all the particles

must be used. Examples of problems for the solution of which a wave

function of this type must be used are: the treatment of atoms con-

taining more than one electron; the hydrogen atom, when the finite

mass of the nucleus is taken into account; the scattering of a-particles

by light nuclei for which the recoil of the nucleus cannot be neglected;

an exact theory, including inelastic collisions, of scattering of electrons

by atoms.

In this chapter we discuss first the problem of the interaction between

two unlike particles (§2). In § 3 we give a brief discussion of the

stationary states possible for atoms or molecules containing two similar

particles, and in §§ 4 and 5 we discuss the collision between similar

particles, with and without spin. It may be emphasized here that if

the particles are unlike, it is not necessary to take account of the spin,

unless their velocities are comparable with that of light, in which case

a relativistic theory must be used (Chap. XV). If, however, the particles

are similar, one must take account of the spin even in a non-relativistic

theory.

2. Interaction of two unlike particles. Non-relativistic theory

without spin

Let us suppose that the particles are an electron and a proton; our

theory can then be applied to the problem of the hydrogen atom, and

to the problem of the scattering of electrons by a hydrogen nucleus.

As in the case of the one-body problem, the result of any experiment

can be deduced from a wave function 0. tp will be a function of the
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coordinates of both particles; if

“ i^pyVpi^p)

r* =
are the coordinates of the proton and of the electron respectively, the

wave function will be of the form

The interpretation of this wave function is as follows: if dr^ and dr^

are two elements of volume situated at the points and then

\tP{rp, r^; t)\^ dTpdr^

is the probability that the proton is in the volume-element dr^ and that

the electron is in the volume-element dr^, both at the instant of time t.

The wave function tjj satisfies Schrodinger’s equation

ih difj T-70 f .

STT^m, STT^m, (
1
)

Here

nip, are the masses of the proton and electron respectively; V{Tp, r^)

denotes the potential energy of the pair of particles when the proton

is at the point r^, and the electron at the point r^.

As an example, we shall obtain the solution which describes the

motion of a hydrogen atom in field-free space. The potential energy

function in this case is

= -€V|rp-r,|.

As in the classical mechanics, the problem is separable; it is possible

to discuss separately the motion of the centre of gravity, and of the

line joining the particles. We make the substitution

(Wp+mJR =
r = Tp-r.,

(
2

)

so that R is the position of the centre of gravity of the two particles,

and r denotes the length and direction of the line joining them. The

operator

transforms intof

ya
SirhUp ^

— VIp4
8n^M

STrhn,

A*

V|

V®
Sn^m*

where M — wip+mg, m* — mpinJlmp+mg).

t See, for instance, Sommerfeld, Wave Mechanics, p. 27, where this transformation

is treated in detail.



90 COLLISIONS BETWEEN TWO PARTICLES V. §2

The wave equation (1) becomes, therefore,

ih difj _
i/f I (3)

This equation is separable; that is to say, we can obtain a solution of

the form Ur,t)go{R,t). (4)

Substituting (4) in (3), wo obtain the pair of equations

Stt dt Sn'm
V*'7o-^S'o’

where ^ is a constant.

leads to

The substitution

/o =/exp(+ 27rt^//A)

S'o = 9'exp(—

27t dt 's-rrhn*

ih dg ^
27r dt Stt^M ’

(5)

(6)

and we may thus take ip to be equal to fg, where / and g satisfy

(5) and (6).

Equation (6) is the wave equation for a free particle of mass M
;
the

solution g(K, t) describes the behaviour of the centre of gravity of the

atom. The particular solution required depends on the experiment

which it is wished to discuss. If, for instance, ip is the wave function

describing a beam of atoms, g must be the wave function for a beam

of particles, which was found in Chap. I, § 4. If the position and

velocity of the atom are known approximately, with errors subject to

the uncertainty principle, then g must have the form of the wave packet

described in Chap. I, § 9.

Equation (5) is the wave equation for a particle of mass m* and

charge e moving in the field of a fixed nucleus. If we wish to describe

a hydrogen atom in its normal state, / must be the first characteristic

solution of this equation.

3. Theory of the interaction between two similar particles

(This section is intended to be a summary of the usual theory of the stationary

states of systems containing two similar particles.)

We shall suppose first that the particles have no spin. A particle with

no spin has only three degrees of freedom, f its state being completely

t We do not wish to imply that the a-particle and carbon nucleus have ‘really’ only
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determined when its position in space is given. [This is of course not

true of an electron, because its magnetic moment can point in any
direction.] The helium nucleus (i.e. the a-particle) and the carbon

nucleus are examples of this kind of particle; the evidence that this

is the case is discussed below.

Before considering collision phenomena we must remind ourselves

of certain properties of the stationary states which are possible for mole-

cules (Hcg, CgHg, etc.) containing two such particles. If we wish to

calculate the energy values which are possible for such a molecule, we
proceed as follows: Let us take the case of the helium molecule Hcg.

We first assign a coordinate to each particle, R^, Rg for the two nuclei,

and Fi, Tg, Fg, F4 for the electrons. We then write down the Schrodinger

equation for the system
;
this is of the form

= 0
, ( 7 )

where 0 is a function of the coordinates of the six particles, and B is

the usual operator. As is well known, bounded solutions ip can only

be found for a certain series of values of E, the ‘eigenvalues’, which

we denote by ^

We expect these to be the possible values of the energy of the molecule.

Actually, only half the predicted number are found to occur in nature

—

i.e. in the band spectrum of the molecule.! We must now examine the

reason for this fact.

Apart from accidental degeneracies, which can in general be removed

by electric and magnetic fields, there corresponds, to each discrete

eigenvalue E^ of the energy, a unique wave function

^„(Ri,R2;ri,r2,r3,r,),

which is a solution of the differential equation (7). These solutions all

have the property that they are either symmetrical in the coordinates

three degrees of freedom—i.e. that they are not complex structures which can be split

lip into their component parts. We mean simply that in the experiments considered the

probability of the internal structure of the nucleus being in any stationary state other

than its normal state is negligible, and also that the normal state is non-degenerate

;

and thus, when the nucleus is at rest in free space, three coordinates are sufficient to

specify its state.

In considering the collision between atoms moving with gas-kinetic velocities, or

indeed with any energy less than the first resonance potential, the helium atom may
be treated as a ‘particle without spin’ (cf. Chap. XII, § 3.1).

t Cf. Kronig, Band Spectra, p. 94. The statement is only true if it is understood to

refer to a given electronic state, because some of the theoretically possible electronic

states do not occur, owing to the exclusion principle.
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R^, Rg, or they are antisymmetrical; that is to say, either

ijiJRi, Rj; r^...) = ^A»(Ra. Ri; rv.) (symmetrical),

or ^„{Ri,R2;ri...) = —^„(R2,Ri;ri...) (antisymmetrical).

This property is not an assumption about the wave functions; it is

a deduction from the differential equation that the wave functions

satisfy. The prooff depends on the assumption that the mass and

charge of the two particles are exactly the same, so that the operator

H is symmetrical in the coordinates of the two particles.

It can further be deduced from the wave equation, that if the mole-

cule is in a state described by a symmetrical wave function, then no

possible disturbance can bring the molecule into a state described by

an antisymmetrical wave function. The converse is also true. This is

true not only of the stationary states; if a system containing the two

nuclei is in any state described by a symmetrical wave function, the

wave function will remain symmetrical under any perturbation what-

ever; and vice versa. The proofJ depends essentially on the assumption

that, given any field, and two points P and P', the potential energy

with the particles at rest at P and P' respectively does not depend on

which particle is at P and which at P'. If the particles were very slightly

different, in mass or in charge, then this would not be the case, and in

general a perturbation (such as a collision) would give a finite, if small,

probability for a transition from a symmetrical to an antisymmetrical

state.

We have already seen that only half of the mathematically possible

values of the energy of the molecule occur in nature. It is found, for

the molecules Cg and Heg, that the energy values which occur are

those for which the corresponding wave function is symmetrical in the

coordinates of the nuclei. No reason is known at present why this

should be so,§ and we must regard it simply as an experimental fact
;
it

is, however, consistent with, but not demanded by, the laws of quantum

mechanics that either only symmetrical or only antisymmetrical states

should occur, because, as we have seen, these laws demand that a

molecule that is once in a symmetrical state will never make a transition

to an antisymmetrical state. The fact that only half the states are

t The proof is given at the end of this section.

J Cf. Dirac, Quantum Mechanics, 3rd edition, p. 208.

§ Unless we regard the a-particle and the carbon nucleus as complex systems formed
from a given number of neutrons and protons; we can then deduce the symmetry
properties of the nuclei from the corresponding properties of the neutron and proton.
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observed, and that the missing states do not appear under any dis-

turbance, shows that the properties of any two helium or carbon nuclei

must be absolutely identical. It also proves that the particles have no
fourth degree of freedom (spin)—at any rate in their normal state, since

in fact they are complex particles.

We now pass on to the consideration of particles with spin, such as

the electron, proton, and most nuclei. As we have seen in Chapter IV,

such particles have a fourth coordinate s, the energy of the particle if

passed into a magnetic fieldH along the 2:-axis being proportional to sH.

For electrons and protons s can only have the values ± 1 ;
for nuclei

other than protons certain other values are allowed.! ^ particle with

spin is thus specified by the coordinates (r, s). We shall denote this

group of four coordinates by 6,

If we wish to calculate the energy-levels of a system containing two

particles with spin, such as the helium atom, which contains two elec-

trons, we are faced with the difficulty that the Hamiltonian for such

a system is not known exactly, J the corrections introduced by the spin

being of the same order of magnitude as the 'relativity corrections’.

The assumption that this Hamiltonian exists leads, however, to im-

portant qualitative results in agreement with experiment about the

number and order of magnitude of the energy-levels, and the possibihty

of transitions from one to another.

Let, then, H be the Hamiltonian of a system containing two similar

particles with spin, let us say a helium atom. To find the energy-levels

we must solve the wave equation

= 0.

There will as before be a series of energy-levels E.^ for which bounded

solutions can be obtained, and corresponding wave functions

The operator H must be symmetrical in the coordinates of the two

particles; therefore, as before, the wave functions corresponding to

every non-degenerate stationary state will be either symmetrical or

antisymmetrical; that is to say, we shall have

= ±UhA)-

t In the usual theory of hyperfine structure a nucleus is assigned an angular

momentum ihl27r {i = 0, 1,...), and a magnetic moment ig{i)€hl4:7rmc, where g{i)

is a number of the order 1 /lOOO. The extra energy arising from the interaction with the

magnetio Held H due to the electronic shell is mBHg{i)€hl^7rfnc, where ms is the com-

ponent of i along //. Cf., for example, Pauling and Gk)udsmit, Structure of Line Spectra

(1930), p. 202.
•

t Cf. Chap. XV.
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As before, transitions between states of opposite symmetry cannot occur

under any perturbation.

For all particles that have been investigated it is found that either

only the energy-levels with antisymmetrical wave functions occur

(electrons, protons) or only the energy-levels with symmetrical wave

functions (a-particles, carbon or nitrogen nuclei). As we have seen

already, this fact is consistent with wave mechanics, but not demanded
by it.

The possibility of ascertaining whether a given energy-level observed

experimentally has a symmetrical or antis3^mmetrical wave function,

although we have no exact theory of the interaction of particles with

spin, depends on the fact that the spin forces are small. We should

expect the wave function describing any non-degenerate state of, say,

the helium atom to be of the form, approximately,

where to a very good approximation, is a solution of Schrodinger’s

equation for point electrons. To calculate the energy-levels of the atom

one proceeds as follows. First one solves Schrodinger’s ecpiation for

point electrons; the solutions are of course symmetrical or antisym-

metrical in r^, Tg. Both sets of energy-levels are found to occur; but

the levels with antisymmetrical wave functions (orthohelium) are found

on close resolution to be triplets. This is explained as being due to the

spin; X four stationary states, three symmetrical, and one anti-

symmetrical; these are, to the zero-order approximation:

XaK)Xa(«2).

XaK)x/3(«2)± xMxp{«i)-

For the definitions of Xoi^ Xp Chap. IV, § 2. Thus, corresponding to

every solution of Schrodinger’s equation, there are four theoretically

possible energy-levels; the fact that the observed parhelium-levels are

singlets and the orthohelium-levels triplets shows that only wave func-

tions occur which are antisymmetricalf in 0^,

In the case of the homonuclear diatomic molecules the procedure is

t Particles for which only antisymmetrical wave functions can exist are said to satisfy

the Fermi-Dirac statistics; particles for which only symmetrical wave fimctions can
exist, the Einstein-Bose statistics. Particles which obey the Fermi-Dirac statistics obey
also the ‘exclusion principle’, as can easily be shown. For if two such particles are in

states described by wave functions ^5, then the wave function describing the pair

of particles is

But if the two states are the same, this wave fimction vanishes; therefore the two
particles cemnot be in the same state.
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essentially the same; we solve the Schrodinger equation, neglecting the

spin of the nuclei. The splitting produced by the nuclear spin is too

small to be observed directly; the spin multiplicity of a given state is

revealed only through its statistical weight, which affects the relative

intensity of certain of the rotational bands. (Cf. Kronig, Band Spectra,

and Molecular Structure (1930), pp. 94 et seq.; cf. also the article by

Kallmann and Schuler, Ergebnisse d, exakt. Naturwiss, 11 (1932), 156.)

3.1. Proof that the wave functions describing systems containing two

similar particles in a non-degenerate stationary state are either sym-

metrical or antisymmetrical in the coordinates of the particles

Let 1, 2 denote the coordinates of the particles; then i/r(l, 2), the wave

function, satisfies
i7(l,2)e^(l,2)^^^(l,2) ^ 0, (a)

where H is some operator which is symmetrical in the coordinates of

the particles. Since we assume that the state is non-degenerate, ijj is

the only bounded solution of (a).

Interchanging the coordinates 1 and 2 in (cx), we obtain

[H{2,\)-Eyi2,l)rr=0. (p)

But since H is symmetrical in the coordinates of the particles, //(2, 1)

is equal to iy(l, 2). Hence from (jS) we obtain

[//(l,2)-i;M2,l) = 0. (y)

It follows from (y) that 0(2, 1) is a solution of equation (a). But since

0(1,2) is the only solution of (a) which is everywhere bounded, we

must have
4,(2,!) = A^{1,2),

where .4 is a constant. But it is clear that

JJ
[4,(l,2)fdT,dr^ = jj

[4>(2,l)fdT,dr„

and that neither integral is zero.

It follows that = 1,

Hence, since all the quantities in these equations are real, we have

A = il.

This is what we set out to prove. We must emphasize that the proof

only apphes to non-degenerate states. States with unquantized (posi-

tive) energy are always degenerate. For such states the theorem is

not true.

Reference, For the general theory of non-combining states, see

Dirac, Principles of Quantum Mechanics, 3rd edition, Chap. IX.
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4. Collision of two identical particles without spin

We suppose first that the particles have no spin (a>particles). Imagine

an experiment similar to that illustrated in Fig. 15. a-particles are fired

with velocity v at a screen AB, and a-particles are also fired with equal

and opposite velocity at a screen CD, Apertures in the screens are

opened and shut again, not necessarily at the same moment. Wave
packets would pass through. Let these have wave functions

v(rA)

both normalized to unity.f The problem before us is how to calculate

the wave function at a time t after the collision. The simplest procedure

would be to assign to the particles coordinates Tj, Fg, where is the

|A C|

> <
> <
y <

<

b D

Fig. 16.

coordinate of the particle which passed through AB, etc. Thus the

wave function before the collision would be

v{Ti,t)v{r2,t), (
8

)

and the wave function ^(Fj, Fg, t) after the collision would be determined

by means of a wave equation of the tjrpe (1) and this initial condition.

To interpret the wave function one would assume r2,^)P

to be the probability of the first a-particle being in the volume-elementJ

(ri,dTi) at time t and the second a-particle in the volume-element

(Fgjdxg). The probability of finding one or other of the particles at

(Fi, dr^) and the other at (Vg, drg) is thus (omitting t)

[ |®+ r,) P] dr, dTjj. (9)

This method of treating the problem cannot, however, be correct.

The reason for this is that if we take the initial wave function (8), and

suppose there to be electrons present also, then we obtain a finite

probability of a molecule being formed, and moreover a finite pro-

t i.e. such that J |u(r, ^)|* dr = 1.

X We use the notation (r, dr) to denote a volume-element at the point r, and of

volume dr.
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bability for the formation of any of the mathematically possible

stationary states. Now this is contrary to experiment; we know that

for Hog only the stationary states with wave functions symmetrical in

the coordinates of the nuclei are found in nature. We know also that

if a wave function is initially symmetrical, it must remain symmetrical

for all time. Thus we shall obtain agreement with experiment if we
make our initial wave function symmetrical in the coordinates of the

two a-particles.

The only way in which we can combine the wave packets u and

V to form a symmetrical function is by taking for our initial wave
function

'/'(ri,r2) = *[M(ri)z;(r2)+M(r2)t;(ri)], (10)

where Ic is some constant. We must consider now the interpretation of

this wave function; the value that must be assigned to k will then

become apparent.

Since initially the wave packets do not overlap, it follows that, for

any value of for which u(ri) is finite, vanishes. Thus at time

* = == 0 .

Hence we have, when ifj is given by (10) above,

l'/'(ri,r2)12 = ifc2lw(ri)«;(r2)iH**|M(r2)t;(ri)|2. (11)

Now it is a function which vanishes except in the neighbourhood of the

slit AB, and v vanishes except in the neighbourhood of CD, Thus

vanishes unless is near AB, and near CD, or vice versa. Thus we

cannot interpret \ip\^ dT^dT2 as being the probability that the particle

observed at is in the volume-element {Ti,dTi), etc., because this

latter probability is zero if is near CD, We must interpret \ip\^ dr^dr^

as the probabihty that one a-particle (either of the two) is in the

volume-element dr^, and the other in the volume (irg. It is clear that

(11) gives this probability correctly if we put k equal to unity.*)*

We adopt this interpretation, therefore, of any wave function r^)

describing two identical particles. We may note that if this interpreta-

tion is to make sense, must be symmetrical, i.e. we must have

There are two ways in which, at time t — 0, we can form a wave function

with this property; the two possible wave functions are

«{riHra)±«(rXri).

t Note that this gives JJ
dr^ dr^ == 2.

Wave functions for two identical particles ought therefore to be normalized to 2.

5596.67 H
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Thus we see that with the interpretation given above we must use either

a symmetrical or an antisymmetrical wave function; if it were not that,

for Hcg, no antisymmetrical states occur in nature, we should not know
which to use, and it would be impossible to make predictions by means
of wave mechanics, in collision problems of this type.

Of course it is not a priori necessary to interpret ip in this way; we
could use the unsymmetrical wave function, at time ^ = 0,

and make the interpretation that dr^dr^ is the probability that a

particular one of the two particles is at r^. The objection to this course

is, as we have emphasized, that it leads to finite probabilities for the

formation of molecules in antisymmetrical stationary states, which are

not observed.

The use ofthe symmetrical wave function will give different scattering

probabilities from those obtained using unsymmetrical wave functions.

If we use the latter, the initial wave function is 2i(ri)v(r2); after time t

let the wave function be Fg, ^). We have to make the interpreta-

tion that |*/f(ri,r2, drj, drg is the probability that the particle that

was originally at .45 is at (ri,dTi) and the other at (r^^dr^), while

10(^2, ri,<)|^ dTi(iT2 is the probability that the particle which was
originally at £ is in the volume (r2, drg), etc. Thus the probability that

one particle is at (Ti^dri) and the other at (rgjdxg) is (cf. equation (9))

dr^dr2-
(
12

)

On the other hand, if we use the symmetrical wave function, the initial

wave function is «(rXr2)+M(rXri)
and the wave function after time t is

(
13

)

and the probability that a particle is at (ri,dTi) and the other at

(ra. dr,) is
<)+^(ra, ti, <)1* dr^dr^,

(
14

)

[ l•A(^l,ra)|*+|^(ra,r^)|*+^(rl,^a)^*(^a,r,)+

+^(r2, ri)^*(ri, r^)] dr^dr^.
(
15

)

We have seen that the use of the symmetrical wave function
(
13

)

forbids us to assign a probability to the event of a particular a-particle

being found in the volume dr^—^let us say, the cx-particle which was
originally in the neighbourhood of AB, If an ot-particle is observed at
a given point, it is in general impossible, by any conceivable experiment,
to find out whether it is the a-particle which was originally at AB, or
the other. Thus the wave function give us no more information than
can be obtained experimentally. It is only possible in principle to know
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which (x-particle is observed, if the path of the wave packet describing

one a-particle does not overlap at any point with the path of the wave
packet describing the other a-particle. It is in principle possible to

devise such an experiment with slow a-particles [Sne^lhv >1). In Fig. 16

the shaded areas represent the paths of the two wave packets. It is

clear that if a particle is observed at P it must be the one which was

originally at AB, Hence it appears that in this case the symmetrical

b 0 A

wave function gives us less information than could be obtained experi-

mentally. However, here the unsymmetrical wave function will give

us the same probabilities of finding a particle as the symmetrical wave

function, because the ‘cross term’ ^(rj, r2
)^*(r2 ,

Fj) in (15) vanishes for

all Fp Fg.

We must now consider in greater detail how to calculate the scattering

when two particles collide. For purposes of calculation it is simplest

to consider steady beams of infinite width. We therefore consider two

beams moving with equal and opposite velocities \v parallel to the

z-axis. We require to find the number of scattered particles that will

be observed travelling in the direction OP making an angle 6 with BA,

The particle may have been deflected through an angle 6 from HO, or

an angle n—

d

from AO, as shown in Fig. 17.
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We introduce coordinates Tg to describe the two particles; we then

transform to ^ „r = ri-Fg

R =
We findf that a wave function can be obtained of the form

^(r,.r,) = nmr)-
In our case, since the centre of gravity is at rest, T is a constant.

iff satisfies the equation

S7Th^n*r
V^ifj- F(r)]^ = 0, (16)

where m* ~ \m

and V[t) is the mutual potential energy of the particles. A solution

0(r) is obtained by the methods of Chapter II, having the form, for

large r,

^ ^
where representsJ the ‘incident wave’ (in r space), and the

scattered wave. If the particles were distinguishable, one could use this

wave function to describe the scattering; \f(0)\^ would be proportional

to the probability that the fine joining the particles is deflected through

an angle 9, Thus the number of particles scattered along OP would be

proportional to
|

2
_|_ |2

We must, however, use the symmetrical wave function

>P{ri,r^)+if>(r2,rj).

By interchanging and Fg, r is changed to — r. r is therefore unaltered

and 6 is changed to tt— 0. The symmetrical wave function is therefore

The incident wave may be written

2 cos kz — 2cosifc(zi— Zg);

the average value of \ifj\^ for the incident wave is therefore 2, and so

[cf. § 3, p. 97, footnote] the wave represents one particle per unit area

in each beam. We deduce from (17) that the probability that a scattered

particle will be found in a volume-element dr^, and the particle with

which it collided in the volume-element dxg is

t Cf. § 1 of this chapter.

} For the cenae of the Coulomb field the form of the incident wave is more complicated

;

cf. Chap. Ill, § 1.
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where r is the distance between dr^ and drg, and 0 the angle that the

line joining dr^ and dr^ makes with the z-axis.

It follows that the effective cross-section for a collision in which
either particle is deflected into the solid angle dcj is

(18)

The probability of scattering when one of the particles is initially at

rest is easily obtained. In a given collision the paths of the scattered

particle and the knocked-on particle are at right angles. If an a-par-

ticle moving with velocity v strikes a stationary a-particle (He nucleus)

the effective cross-section I[6) day for a collision in which a particle is

scattered through an angle 6 into a solid angle dco is, from (18) (cf.

Chap. VIII, § 10),

1(6) dco ~ \f(26)-\-f{7T—26)\HcoQ9 dco. (19)

It is to be noted that (19) gives the probability that a particle will

be observed moving in a direction making an angle 0 with the direction

of motion of the incident beam; the particle may be either a scattered

a-particle from the incident beam, or a knocked on helium nucleus.

If a collision is observed, it is impossible to tell after the collision

which is the incident particle and which the knocked-on particle, and,

according to the wave mechanics, the question has no meaning.

4.1. Coulomb field

If the interaction between the particles may be represented with

suflScient accuracy by the Coulomb field F(r) = [ZeYjr, then f[d) is

known, and isf

/{^) = - cosec^ ^0 exp[ia log( 1— cos 9) -f- 2i7jQ -f itt],

2iti V

where m* == |m, a = 27r(Z6)VAv,

and does not contain 0. From (19) we see that

/(0) == |:?!^j^[cosec^0-fsec^0+2Ocosec20sec2ff]4:COs0, (20)

where O = cos(alogtan20).

The corresponding formulaJ according to the classical mechanics is

obtained from (20) by putting <5 equal to zero.

It will be noticed that formula (20) predicts that at 45° twice as

many particles will be scattered as are predicted by the classical theory.

The number scattered at a given angle according to formula (20) does

t Cf. equation (16) of this chapter, and Chap. Ill, § 1.

J Cf. Rutherford, Chadwick, and Ellis, p. 262.
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not tend to the number to be expected according to the classical theory,

as V -> 0. The scattering between any two angles does, however, tend to

the classical value, owing to the rapid oscillation between + 1 and — 1

of the function O for varying when v is small and hence a is large.

Formula (20) has been verified experimentally for the scattering of

a-particles in helium.f Rather slow a-particles have to be used, because

it is only then that the assumption of inverse square law forces between

the nuclei is sufficient. Cf. Chap. XIII, § 2.35.

5. Collisions between two identical particles with spin

In the preceding section we have considered the collision between two

similar particles which, firstly, have no spin, and, secondly, obey the

Einstein-Bose statistics. In this section we consider the collision be-

tween particles, such as electrons and protons, which have spin—i.e.

half a quantum of angular momentum, and obey the Fermi-Dirac

statistics. The results may easily be generalized for particles with any

number of quanta of angular momentum, and obeying either statistics,

as is shown in § 6,

In the experiment considered at the beginning of the last section, if

the particles have spin, the wave function which describes a particle

must be a function of the spin coordinates. Let the particle which is

passed through the sUt AB have spin in the direction 1, so that the

wave function describing the particle isj

w(r)xj(«)-

Similarly, let the wave function describing the other particle be

Then since we must use an antisymmetrical wave function to describe

the collision, the wave function at times before the collision i8§

The wave function at a time after the collision, neglecting the small

probability that the spins change their direction, is therefore

= Xl(l)Xn(2M(l,2)— Xj(2)Xn(l)^(2, 1). (21)

The probability, therefore, that one particle is in the volume-element

(Fi, dT^ and the other in the volume-element (rg, dr^ is, at time ty

2 2 *‘2> ^2 ) P- (22)
8i

t Chadwick, Proc. Roy. Roc. A, 128 (1930), 114; Blackett and Champion, Proe. Roy.
Roc. A, 130 (1931), 380. { Cf. Chap. IV, § 2, where definitions of Xa* Xfi

given.

§ 1 stands for Tj or 2 for Fj or
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Now,f if 6, (f)
be the polar angles of the direction 1, and 6’,

<f>'
of n,

Xi{«)
= -sin^0Xc<(«)+cosJ0e<^X/3(«)-

I IXiWl* = 1.
8

2 XiWxnW = sin|0sini0'+co8 J0co8|0'e‘<^-'^'>.
8

It follows that (22) is equal to

10(1, 2)|2+ 10(2, l)|2-[0(2, 1)0*(1, 2)+0(l, 2)0*(2, 1)] X

x[8in4i9sin4l9'+cos2|0cos40'+2cosJ(9cosJ0'sini<9sinJ<9'cos(0-0')],

which reduces to

10(1, 2)|2+ 10(2, 1)12--J[0(1,2)0*(2,1)+0(2,1)0*(1,2)X^^^ (23)

where 0 is the angle between the spin directions, namely,

cos© = 1-n.

Thus (23) may be written

^|0(1,2)+0(2,1)|2+£|0(1,2)-~0(2,1)P,

where A — :^(1— cos0), B = J(3+cos0).

Thus to obtain the probabihty of a given collision, one must calculate

the probability using wave functions symmetrical in the space co-

ordinates of the particles, and one must also calculate the probabihty

using wave functions that are antisymmetrical. If the former proba-

bihty is and the latter i^, then the actual probabihty is

J(1— cos0)/^-j- J(3-|-cos0)J^, (24)

where 0 is the angle between the spins of the two colhding particles.

If this angle is unknown—i.e. if the two colhding beams are unpolarized

—^we must average (24) for all 0. Since the average value of cos0 is

zero, the probabihty is

UPs+^PaI (25)

As an example, we shah suppose that a beam of electrons, of density

such that one crosses unit area per unit time, coUides with a single

stationary free electron. It is required to calculate the probabihty, per

unit time, that a cohision takes place in which one of the particles,

after the cohision, moves in a direction lying in the sohd angle

inclined at an angle 6 to the direction of motion of the incident beam.

we have

Hence

and

t Cf. Chap. IV, § 2.
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Thenf Pg =
and similarly,

--^^[co8ec^0+sec^0-f 2<t> cosec^fl sec20]4 cos 6,

Pa rcosec^0+sec^0— 2(1) cosec^^ sec20l4 cos 0,

where (J) — cos^^^logtan^^j.

(26)

The actual probability is given by (24) or (25), according to whether

or not the spin directions are known.

It will be noted that, If the spins are in the same direction, we must

use the antisymmetrical solution only. A consequence is that no elec-

trons wiU be scattered, or knocked on, through an angle of 45°. If, on

the other hand, the spins are antiparallel, so that 0 is 180°, then the

number scattered is try)
, ni

which is equal to the number to be expected according to the classical

theory.

In practice it is only possible to observe the scattering of a beam of

electrons by stationary electrons when the ‘stationary’ electrons are

bound in atoms. The incident beam must then have energy so great

that the binding forces and motion of the atomic electrons may be

neglected. If this is the case, we shall have

27T€^lhV 1 .

The term (P in (26) may therefore be replaced by unity, except at small

angles, where the deviations from classical formulae are in any case

small.

E. J. WiUiamsJ has compared the formulae (25), (26) with experi-

ment by counting forked tracks in a Wilson chamber, using electrons

of energies 20,000 volts. Good agreement with the theoretical formula

was obtained.

The scattering of protons by hydrogen has been investigated by
Gerthsen,§ and evidence in favour of the formula (25) obtained. Recent

work of this kind has been concerned rather more with the determina-

tion of the short range non-Coulomb forces between two protons than

with the effect of symmetry, but, in the analysis of the observations,

this effect is allowed for. A discussion of this work is given in

Chapter Xm, § 1.2.

t Cf. equation (20).

t Proc. Roy. Soc. A, 128 (1930), 469.

§ Ann. d. Phyaik, 9 (1931). 769.
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6. Collisions between identical nuclei

If a beam of atoms is fired into a gas composed of the same kind of

atom, and if the energy of the beam is such that the distance of closest

approach for scattering at a given angle is less than the radius of the

K ring, then the effect of the electrons on the collision may be neglected.

The number of particles scattered will be given by the formulaf

where Pg, are given by formulae (26), m and e being equal to the

mass and charge of the nuclei in question. Cg and depend on the

statistics obej^^ed by the nuclei, and also on the number of quanta of

spin. The ratio Cg:C^ is the same as the ratio of the intensities of the

symmetrical to the antisymmetrical lines in the rotational band spectra

ofthe diatomic molecule ofthe element concerned. Thus we should have

Cg-.C^^ sj{s^ -f 1 )
(Femi-Dirac),

= (Einstein-Bose),

where s^Jij^Tr is the angular momentum of the nucleus (s„ = ^ for

protons, zero for He, 1 for Nj 4 , etc.). For further information about

nuclear spins the reader is referred to Bethe and Bacher, Pev. Mod.

Phys. 8 (1937), 206.

t Cf., for example, Sexl, Zells, f. Physik, 80 (1933), 659.



VI

INHOMOGENEOUS DIFFERENTIAL EQUATIONS

In this chapter methods are given for the solution of certain differential

equations of the type _ p
where L is a linear differential operator of the second order, and F is

a known function.

1. Ordinary differential equations. The general solution

The general type of differential equation considered in this section is

g+2p|+ro = /, (1)

where p, q, f are known functions of x; however, by means of the sub-

stitution r a: tr -c

y = Y exp ^ j
pdx

the equation may be reduced to the form

We shall therefore confine our attention to the equation (2).

Note that if, in the equation

one makes the substitution

one obtains

d^y 2 dy ,

y =
rfavp

There are several methods of obtaining a solution of (2).

Method I

We suppose that two independent solutions of the equation

, n.i. - A
;+ 0

are known. Let these solutions be Then it follows from (3) that

A.(j, = 0
dxy^dx ^^dx) *

We can therefore multiply constants in such a way that

(an*,.
(
4

)
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If ^1 , 02 chosen so that (4) is satisfied, then

X b

T = ^x{x)
J

iff^F dz+ijij^x)
j

dx (5)
a X

is a solution of (2), as may be verified by substituting (5) in the equa-

tion (2). Further, since (5) contains two arbitrary constants a and 6,

(5) is the general solution of (2).

This method is discussed further in Courant-Hilbert, Methoden d.

mathematischen Physiky 1924, p. 273.

Method II

We suppose that one solution of equation (3) is known; denote this

by 0. Then if in equation (2) we make the substitution

II

we obtain
dx^^^ dx dx

It follows that (6)

and hence that
a

T ~ 0(a:)
J

[0(^*')]~^
j

F{x")iIj{x'') dx". (7)

P

which is the required solution, containing the two arbitrary constants

a and

Method I is the most suitable for the problems considered in this

chapter. A third method is given in § 2 for certain differential equations.

2. Solution satisfying boundary conditions

In this section we shall show how to find the solution of the equation

dW
dx^

QW=^F[x)

which satisfies certain boundary conditions. We shall take for Q and

F functions satisfying the following conditions:

F{x) -> 0 as a: -> 00
;

F{x) bounded and differentiable in the range 0 < a; < oo, except at

the point a; = 0, where there may be a pole of order x~'^\

Q{x)^A^U{x)y

where A is a constant, and U a function such that

xV[x) -> 0 as a; 00
,
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and U[x) is bounded and differentiable, except at the point a; = 0,

where U[x) may have a pole of the type n[n-\- l)/a;2 [n a positive integer

or zero).

We shall impose on T* the two following boundary conditions:

(i) T must be zero at the point a: = 0. The indicial equation shows

that one solution behaves like a:^+^ and the other like x~^ near a: — 0;

there will thus be one solution which vanishes at the origin,

(ii) The second boundary condition depends on the sign oi A, HA
is positive, we set ^ ^2

and choose T so that T ~ const,

If A is negative we choose T* so that T shall be bounded as a: 00 .

We shall see that these two conditions determine T* completely, and

that it is always possible to find T satisfying these two conditions,

for all A except in one special case.

We discuss first the case when A is positive. The equation that we

have to solve is _dW
dx^

Let be the solution, which vanishes at the origin, of

g+ [P_[7{^)]^=0.

Let be so normalized thatf

~ sin(i:a:+77) [x large).

Let ^2 solution of (9) such that

^2 ~ ^“^expi{i;x+7?) (x large).

Then and xfj^ satisfy, for all x,

#1_ . #2_ 1

dx dx

(8)

(9)

and hence (5) is the general solution of (8). The solution which vanishes

at the origin is clearly
X X

Y = tpi{x)
j

^fj^F dx—ip^i^)
I*

ifj^F dx» (10)

a 6

Both integrals converge as a; -> 00
;
thus the solution with the required

form for large x is obtained by putting a == 00 . The form for large x is

00

'F A- ^^p^Fdx. (11)

0

t Cf. Chap. II. § 1.
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Thus a solution of the required form can always be found, provided

the integrals oo

J
i^(x)exp(±ite) dx

0

converge.

We shall now discuss the case when A is negative. Putting

we have to solve the equation

dW
dx^ (

12
)

subject to the conditions, T zero at the origin and hounded at infinity.

As before, let be the solution of

dx^
+ [-Y^-U(x)]^ = 0, (13)

which vanishes at the origin. In general, this solution, suitably nor-

malized, will behave for large x like exp(+ya:). It is only for certain

series of values of y (the eigenvalues) that tp has the asymptotic form

exp(-yx).

If y is not an eigenvalue, the required solution can be found as

follows: Let i/fg be that solution of (13) which has asymptotic form

~ y“^exp(-ya:).

Then the required solution of (12) is

= j
'/'2F dx-^,

j 4,, F dx). (14)

'00 0 ^

which tends to zero as x tends to infinity, if F[x) -> 0.

If y is an eigenvalue, then the solution which vanishes at the origin

has asymptotic form exp(

—

yx); we must take for ip^ the solution which

behaves like y'^expya:; the solution of (12) which vanishes at the

origin is

'¥ =
J ^2 J' dx-^2 dx\

'a o'
which for large x behaves like

(

X
\

e-Yx
j
tpzF dx—eY^y-^ /

a o'
The first term may be shown to be bounded since F 0 as x-^ co;
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*

thus we can obtain a bounded solution if and only if

X

^
dx 0, (16)

0

A second method by which a solution of (12) may be obtained is that

used in ordinary perturbation theory. We expand

F{x) = 2«n0«(^)> (1^)
n

n

where the are the normalized characteristic functions of the equation

^+[-y‘n~UM]>Pn = o. (17)

subject to the conditions that ^ should vanish at x = 0 and remain

bounded at a; = oo.

The summation includes an integration over the continuous range

of (—yn positive). There may not be any discrete values at aU.

Substituting (16) into (12), multiplying by and integrating over

all a;, we obtain , « / 2 2\-i

If y is one of the eigenvalues, say y^, then no solution vanishing at

a: = 0 and at a: = 00 exists unless = 0; that is to say, unless

00

J
= 0,

0

which is the same condition as (15).

2,1. Integral equation for the phase

We consider the equation (12) of Chapter II,

= (18)

For the scattering problem discussed in that chapter a proper solution

Gp of this equation was required which had the asymptotic form

Op i^(2n-f 1)A:"^^ sin(ir— |n7r)+ce^^^. (19)

It was shown that c is then given by

c = (2w+l)(e2^’?»~l)/(2iJfc),

where the proper solution had the asymptotic form

Op ^ f"(27t+l)^''V’?*sin(i;r~-Jn7T+77^).
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If we rewrite (18) in the form

then, from
(
11

),

Op ~ i^(2?i+ 1 )A;~^ sin(Ar—
1^77)— J

^U[r)0 dr.
(
20

)

0

Here ^ is the solution of the equation

which vanishes at the origin and has the asymptotic form sin(^r—

^

wtt),

Comparing
(
20

)
with (19) we have

CO

_ _gii
7n

J
^U{r)0 dr,

0

where 0{r) ~ 8in(A:r— ^^tt+t;^). This gives the integral equation

sin 77^ = -[\^^^]^^JnH{^^)U[r)0[r) dr.

0

This result is made use of in Chap. VII, § 6.3. The approximate formula

(27) of Chapter II follows by replacing G{r) by ^(r) when U[r) is small.

3. Partial differential equations

In this section we shall denote the position of a point in three-dimen-

sional space by the Cartesian coordinates (x,y,z), or by the spherical

polar coordinates (r, 0
, ^), or by the vector r.

We denote by L the operator

V^+B-U{r),

where U[r) is a function such that

r?7(r )

0

as r->oo.

Let F[x, y, z) be a function such that ri^ -> 0 as r 00 . It is our purpose

in this section to find a solution ip of the equation

Lifs = F{x,y,z) (21)

satisfying the boundary conditions

0 everywhere finite;

tp
<f>)

(large r)

;

where /(0,^) is some function which we must find.

(
22

)
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To solve (21) we expand i/i and F in series of spherical harmonics.

Let

FS{co8 6) = sin”*^ i"™(cos B) (m > 0),

and let us use the convention that

pm — p—m
n — n

We expand «, „=+„
F{x,y,z) = 2 ^”(»’)J°«{cos0)e^’"f

»=0 m— —

n

Let the required solution ip be

tli{z, 2/, z) = 2 2 B^{r)P^{cos d)e^”^.
{ 23)

n m

Substituting these expansions into (21), multiplpng by

P^(cos sin 6 ddd<f>,

and integrating with respect to d,(j> over the surface of a sphere, we

obtain

Making the substitution = r"^6y,

we obtain — = rA^{r),

which is an equation of the type considered in §§ 1 and 2. The solution

of (24) with the required boundary conditions is therefore, from (14),

= —kLJr) J H„{r)A^{r)r^ dr—kH„(r)
j
L„{r)Al^{ry dr, (25)

r 0

where are solutions of the equation

being the solution bounded at the origin and so normalized as to

have asymptotic formf

L„ ~ (AT)-isin(«:r—Inv+’in),

and being the solution with asymptotic form

~ (ir)~^expi(A;r—JnTT+^n)*

(23) and (25) give us the solution that we require.

t Of. Chap. II» § 1. The condition that L shall be bounded at the origin defines
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For many purposes it is useful to express the solution as a definite

integral

= ///
K{t, r’)F{x', y', z') dx'dy'dz'. (26)

If we write for K

^ 2 (r' > r),

n — O

= ~^2 ^HJr)LjT')P^{co^(d) (r > r').

where cos0 — cos^co8^'4-sin6sin0'cos(<jJ--0'),

then it may easily be shown that (26) is the required solution. Forf

27r TT A

Jd(/> J
sin0d0P^^(cos0)P^(cos^)exp(im<^) = ^^-^-^P^(cos^')exp(m^').

0
0 (27)

It follows at once that (26) is the same as the solution given by (23) and

(25).

3.1. Asymptotic form of the solution

For large r, and fixed r',

iir(r, r')

n̂=0

If we denote by 5(^> the functionj

5 = f (2w+l)iV’J-L„(r)P„(cos^),
n“0

then K{t, r') ~ —A r*"V*'’2r(r', tt—0).
4‘7T

The solution ?/r therefore has asymptotic form

xjj

IJJ
%{r',n-@)F{x',y',z') dx'dy'dz', (28)

provided that the integral converges.

The equation Ltjf = F{x,y,z), where

L = V^-^y^^U{r)

can be solved in a similar way. A bounded solution can always be

obtained unless y is an eigenvalue of the equation (cf. § 2)

L^ = 0.

t Whittaker and Watson, Modem Analyaist p. 328.

t Chap, n, eq. (16). The asymptotic form of g is

exp(tA;z)+r-y(^)exp(tfcr),

S695.67
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4. Solution of the equation

= F{x,y,zY (29)

This is a special case of the equation considered in the last section,

the function U[r) being put equal to zero. In this case

5(r, 0) = ex^{ikz),

and therefore the asymptotic form of the solution ^ is, from (28),

if) ~
JJJ

exp(~iin.r')i^(x',y', 2:') dx'dy'dz\ (30)

where n is a unit vector in the direction 0, and so

n.r' = r'[cos0cos0'+sin0sin0'cos(^~^')].

The solution ifs is

0 = JJJ
dx'ds'dz-,

with
47r |r— r I

as may be shown from equation (27), or directly as follows:

We make use of the theorem*}* that if/, g are any two bounded twice

differentiable functions of x, y, z^ and any volume bounded by a

closed surface S,

/ ^ jJJ
dxdydz. (31)

Here djdn denotes differentiation normal to dS away from the volume

Q; the surface integral on the left is to be taken over the surface S
of Cl and the volume integral on the right throughout the volume of

fi. We apply this theorem by taking for/ the solution ^ (assuming one

to exist) of the equation (29) satisfying the boundary conditions. We
take r' for our independent variable, so that / is ^(r'). For g we take

JS^(r, r') considered as a function of r', r being kept constant. For Cl we
take the volume enclosed by two spheres a>2 ,

both with their centres

at the fixed point r. The radius of coj is to be and is finally to tend

to infinity; the radius pg of cog is finally to tend to zero. It will be seen

that the point r = r', at which K has a pole, is excluded from Cl.

We obtain

J = ///
dx'dy'dz'. (32)

t Jeans, ElectricUy and Magnetism, p. 160.
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Now throughout H we have

= -BK,

and — —k^ilf-\-F[x\y\z'),

Therefore the right-hand side of (32) is equal to

- jjj
Kir, r')F{x', y'yZ') dx'dy'dz'. (33)

The integral on the left-hand side of equation (32) can be split up into

two parts: the integral over the outer boundary and the integral

over the inner boundary cog- Using the asymptotic expressions for K,

it is easily seen that the first integral tends to zero as the radius of co^

tends to infinity. The expression

( K^, dS'
J dn'
oja

tends to zero as the radius of tends to zero; since, however, K has

a pole at the centre of the sphere, it follows that, as cog -> 0,

r^ ^ -> _^(r) r - ds’
J dn'^ 'J 47Tlr-r'p

(t)t 0)%

Comparing this with (33), we have

'A(r) = JJJ
K(T,T')F{x',y',z') dx'dy'dz',

which is what we set out to prove.



VII

SCATTERING BY A CENTRE OF FORCE
TREATMENT BY INTEGRAL EQUATION, AND

MISCELLANEOUS THEOREMS

1. The Born approximation

OuB problem in this section is the same as that of Chapter II, namely,

to calculate the scattering of a beam of particles by a field F(r); we
shall obtain an approximate formula which is only valid for fast

particles, but which can be evaluated with much less labour than is

required for the exact formula of Chap. II, eq. (17).

We have to solve the wave equation

V^+[k^-~U(r)]^ ^ 0, (
1
)

where = Sn^mElh^, U{r) = STT'^mV{r)lh^,

and where ifs must have the asymptotic form

ifj (
2

)

We make use of the theorem, proved in Chap. VI, § 4, that the most

general bounded solution of the equation

= F{x,y,z),

where F[x,y,z) = F(t) is a known function, is

where G is the general solution of

V2G+P6? = 0.

It follows that the general solution i/j of {!) will satisfy the integral

equation

^ J
U(r')4,(r') dr'. (3)

The expression on the right of (3) represents an outgoing wave; thus, in

order that ip may have the asymptotic form (2), we must choose

G ==

To obtain f{d) we require the asymptotic form of (3) for large r. De-

noting by n a unit vector in the direction of r, so that

n = (sin d cos
(f>,

sin 0 sin cos 0),

|r—r'l ~ r—n.r'4-terms of order 1/r,we have
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and hence from (3)

ifj

J*

e~^^“***'?7(r')^(r') dr'. (4)

Formulae (3) and (4) are exact. It is interesting to note that the scat-

tered wave is that which would be produced if each element of volume

scattered a wavelet of amplitude, at unit distance, ~27Tmh~W{r) dr

times the amplitude of the wave at that point.!

We may obtain a formula for f(0) if we assume that the wave is not

much diffracted by the scattering centre. We may then replace 0{r')

in the integral in (4) by the unperturbed wave function exp{ikz'). This

approximation is only valid for fast particles (cf. § 2 and Chap. IX).

We then obtain from (2) and (4), dropping the dashes,

m = J
exp[t^{n„-n).r]C/(r) dr, (6)

where is a unit vector along the z-axis, so that 2: ~ Hq . r. The integral

may be evaluated by taking spherical polar coordinates a,jS, the axis

a = 0 being taken in the direction of the vector Hq— n. We obtain

27r TT 00

^(0) = —^ J
d/3

J
sin a da

J
dr

00 0

where K = A;|no— n| = 47rsin^d/A, A == 27r/i = hjinv.

Carrying out the integrations over a, j8, we obtain

x/n\ Sirhu r sinKrj.r ^

/(^) ^ -
-nr J

^ ^

This is the required formula; the intensity scattered into the solid angle

doi is 1/(0) doj.

If V[r) is an atomic field, it is often convenient to transform (6) into

an integral involving the charge density in the atom; if we denote by

—€p{r) the charge density at any point, we have

Using the formula!

V{r) = p{r') dr'

|r-r'|
•

f
exp(in.r') , , ^

J |r-r'|

47T
gi(n.rt

(
7
)

t Cf. Mott, Proc. Boy. Soc. A, 127 (1930), 668.

t Cf. Chap. XI, § 1.1.
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we obtain, substituting (7) in (6),

m = SiThn ^Z—F{e)
A*

^

(
8
)

where F(e)^i^
j
p{rfjl^r^ dr.

(
9

)

The quantity F is known as the atomic scattering factor, and has been

tabulated over a certain range of K for all elements.*)*

The formula (8) may be compared with the corresponding formula

for X-rays. The intensity of X-rays scattered by an atom through an

angle 6 into a solid angle do) isj

da>(l-f cos^^).

A simple explanation may be given of the similarity between these two

formulae. §

1.1. Remarks about the scattering as given by the Born formula

The scattered amplitude may be calculated either from formula (6) or

(8). From either formula we see that the scattering is a function of

sin \6jX only, that is to say, of v sin \d. This is not the case for the exact

formula of Chapter II, and will therefore be true only under conditions

(fast electrons) to which the Born formula can be applied.

It is clear from formula (6) that, if F(r) tends to zero faster than

as r tends to infinity, then f[d) remains finite as d tends to zero.

This is true also of the exact formula (Chap. II, (17)) for/(0).

For a given atom, the value off{6) for 6 equal to zero is independent

of V. f(6) falls more steeply with increasing 0 for large v than for

small.

Since F{d) tends to zero for increasing K, we see that for high velo-

cities and large angles, f{6) tends to (Z€^l2mv^)cosec^ ^0, so that the

scattering is mainly nuclear, as one would expect. The non-occurrence

of the phase factor (Chap. Ill, eq, (16)) inf{0) is a consequence of our

use of the Bom approximation.

t Cf. Chap. IX.

X Cf. Compton and Allison, X-rays in Theory and Experiment^ p. 135, Chicago (1935).

§ Cf. Mott, loc. cit.
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2. Connexion between the Born formula and the exact formula
for fid)

The exact formula for f{6) is (cf. Chap. II, eq. (17))

i 2 (
2«+l)[exp(2^‘^«)-l]^«(co80). (

10
)

n= 0

The Born formula gives (cf.
(
6

)
above)

00

.... S-n-hn r„, .siniTr
f(e) —j v{r)-^r^dr.

(
11

)

0

In this section we shall investigate under what circumstances the

formula
(
11

)
is a good approximation to

(
10). In Chap. II, § 2

,
an

approximate expression for was found, valid for small. The

formula obtained was
00

J
F(r)[/„(r)]V^ dr, (12)

0

where /„(r) = {nl2kr)ij„^i{kr).

Since both
(
11

)
and

(
12

)
are obtained by treating V(r) as a small per-

turbation, we should expect that, on substituting
(
12

)
in

(
10), we should

obtain
(
11 ). That this is the case follows at once from the well-known

expansionf .

= 2 {
2w+l)i"„(cos 0)[/„(r)p,

if exp(2i77^)—

1

in
(
10

)
is replaced by 2i 7^^.

The formula
(
12

)
often gives good results for 17,^

even when is

comparable with ^tt; one cannot then use the Born formula, but
(
12

)

may be substituted directly in
(
10

)
(cf. Chap. IX, § 5).

3. Relativistic correction

So far we have ignored effects due to relativity. These may be taken

into account by applying the method of Born’s approximation to the

Dirac equations.

The second-order equation for a component of the Dirac wave

function may be written

VVA+[**-|^F(r)+^-2p,a.gradFj^A = 0 (A = 1,2, 3, 4),

f Watson, Theory of Bessel Functions^ p. 363, eq. (3).
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where W is the total energy, = (W^—m^c^)/(^^c^)f and p^a is the

vector matrix, operating on A, which has components

(

0 0 1 0 \

0 0 0 —1
1

1 0 0 or
0-1 0 0/

Following Bom’s approximation, in which the scattering potential

is treated as small, we write

= [^F{r)+ ipj0.gradF]a,e<^

the term V^jK^c^ being neglected, represents the component of

the incident wave so, following (12) of Chapter IV, with — — 0,

Pa M,

<3^3

~ If+mc2~~ a4*

We then find, as in (4),

^
(f>),

where

f{e) =^ J
F(r')e<*("*-") "'dT',

. n == cos 0, y = ( 1— P = vjc, v being the velocity ofthe particle.

The differential cross-section (see Chap. IV, § 4)

|/(0)|2/(1^^2).

Comparing with (5, 6) it will be seen that the effect of relativity is to

introduce the two factors, ( 1— arising from Lorentz contraction and

1—jS^sin^^ff from the spin. Both of these are independent of the form

of the scattering potential V{r).

4. Classical limit of the quantum theory scattering formulae

It is weU known that if one makes h tend to zero in any formula of the

quantum theory, one obtains the corresponding classical theory formula.

It is interesting to show directly that this is so for our formula (Chap. II,
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eq. (17)) for the number of particles scattered by a field F(r). We can

see also under what conditions the number of particles scattered is the

same on both theories.

We require first an expression for the number of particles scattered,

according to the classical theory.

If we take the scattering centre at the origin, then the equation of

any orbit with energy E and angular momentum J is, in plane polar

coordinates, ^

J
^[2m{E-V)-J^lr^f dr = 0. (13)

If be the positive zero of

2m{E-V)-J^lr^

and if a be the angle between the asymptotes of the orbit, then

00

= _ I
^[2m{E-V)-J^/r^]^ dr. (14)

fo

dy the angle of deflexion, is given by the equation

0 == 7T— (X. (15)

Thus from (14) and (15) we know the momentum J corresponding to

a given deflexion 6.

Suppose now that we have a stream of particles whose velocity is

V and that N cross unit area per unit time. Then the probable number

of particles that cross per unit time a plane perpendicular to the direc-

tion of flight, with angular momentum between J and J+dJ, is

2ttNJ dJImV,

The number of particles deflected between angles d and 6-\~dd is,

therefore, 2nNJ dJ
mV dd

’

J being given as a function of 0 by ( 14) and (15). This number we have

denoted by 2ttNI[d)^m6 dd (cf. Chap. II, § 1). Thus we have

J dJ 1

mV dd sin 6

We now consider the quantum-theory formula. We require the solu-

tion of TO r

^+F{r)L = 0. (
17

)

F(r) =
n(«+l)

where
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Since we are investigating the case when A -> 0, we may suppose that J^’is

large. With this assumption, the solutions of (17) are approximately

f

i?’-iexp|^±i JjJ’idrj. (18)

We require the combination of these solutions that is finite at the

origin. To find this, we note that F{r) has a single zero, say, between

r = 0 and r ~ co. F[r) is negative for r less than r^, positive for r

greater than The solution (18) will therefore be oscillating for r >
exponential for r < r^. The solution that we require will clearly be the

one that, for decreasing r, decreases exponentially as r becomes less than

Tq. This solution is, to the same approximation asj (18),

LJr) ~ i’-i 8in|^|7r+
J

c^rj. (19)

To

(19) is a valid approximation to Lj^r) only in the range r > Tq, For

large r, the asymptotic form of (19) is

[

oo

^
{F^—h)dr-\-k{r--rQ)

,

where Ic^ = STT^mElk^,

For the expression (Chap, II, eq. (15)) therefore, we have, to the

desired approximation,
00

Vn = \TT-\-\nTT—kr^+
J
[!'*— fc] dr. (20)

To

This expression for may be used for the calculation of the quantum-

theory scattering in cases where is large (cf. § 6.2).

To obtain the scattered amplitude /(0) we now have to sum the series

(Chap. II, eq. (17)),

i2 (2«+ l)[exp(2i7,„)- 1]/>„(C08 e). (21)

Since the greatest part of the value of the series is contributed by large

values of n, we replace /^(cos 0) by its asymptotic form§ for large n

t Jeffreys, Proc. Lond. Math. Soc., Ser. 2, 23, Part 6, or Chap. I, § 6, of this book,

j Cf. Jeffreys, loc. cit. See also § 6.2 of this chapter.

§ See, for example, Jahnke-Emde, Funktionentafeln, p. 81.
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We note first that the series

123

2(2n+l)P„(co8 0) (0^0),
n

though divergent, is summable as the limit of a power series on its

radius of convergence, and that the sum is zero. We may therefore

subtract this series from (21). Forf{9) we obtain, therefore, the divergent

but summable series

/(^) ^ 2 ^(n){exp[iB(ri)]— exp[ijB'(7i)]}, (22)

where ,

A[n) — —— (2n/7rsin^)l,

B{n) 2r?,+(n+i)e+i7T,

B\n) = (?i+J)0— Jtt.

To sum such a series as

2 ^(n)exp[t^(n)] (23)
n

we inquire whether there is any value of n for which

dn

If there is any such value, say, then in the neighbourhood of there

will be a large number of terms of the series over which exp[iJS(n)] is

not oscillating. Thus effectively all of the sum of the series comes from

this region. (23) may then be replaced by

-f 00

^(7io)exp[i£(7iQ)]
J

exp{ij8(7i— no)^} dn,

where
n=7io

Evaluating the integral, we obtain

exp[i£(wo)]. (24)

We now inquire whether the differential coefficient of B{n) or B\n)

does in fact vanish for any positive value of n. The condition is

00

2|- J
dr+n±e = 0

ro

for B and JS' respectively. Putting

nhj2TT = J,
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this condition reduces to

J
dr+\n±\e = 0

. (26)

r©

Ifwe take the negative sign we obtain equation (14), giving the classical

angular momentum J of an electron scattered through an angle 9. One

can easily see that if one takes the positive sign there is no positive J
satisfying the equation. Thus in

(
22

)
the sum of the second series is

much greater than the sum of the first, and we have for f(6)

f{e)==-2A(n)exTp[iB'{n)l
n

which reduces, by (24), to

—^(no)(7T/i^)* exppJ5'(wo)],

where Ano/27r is the root of (25). For
j
8 we have

F©

which reduces by (25) to
47r dJ

Putting in the value for ^(^o) obtain

1/(0) 1

* = J^jmH^eme,

which is the classical formula for I[9).

We see that the condition for classical scattering at a given angle 9

is that Uq should be large, where Uq is the value of n for which

and that should also be large for this value. Compare the condition

of validity of Bom’s formula, which is that 77^ shall be small for all n.

5. The range of validity of the Born and classical approximations

It is apparent that the two approximations considered in this chapter

are largely complementary.

Broadly speaking, the classical approximation is valid, except at very

small angles of scattering, when a large number of phases, many of

which are large, are required to represent the scattering. On the other

hand, the Bom approximation holds when the phases are aU small, and

is less accurate at large than at small angles. Neither are valid when
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the scattering is given in terms of a small number of phases some of
which are large. Under these circumstances the exact treatment
described in Chapter II is necessary.

To put this on a more definite basis,! let us consider first the scattering

of a particle of mass m and velocity t; by a field confined to a region of

extension a in which its potential is of the order D. For a classical

treatment to hold, two conditions must be satisfied:

() the orbit of the particle must be well defined in relation to the

distance;

() the deflexion due to the collision must also be well defined.

The first requires that mva ^ h, (26)

i.e. that the wave-length should be small compared with the dimensions

of the scatterer. This corresponds to the condition in § 4 that the value

of n, for which drjjdn = ^0, should be large.

The second requires that, if Ap is the momentum transfer in the

a\p^h.

Now Ap is of the order Djv so we must have

Dajhv > 1. (27)

This corresponds to the condition in § 4, that the value of for which

drjJdn = should be large.

Born’s approximation will be valid, on the other hand, if

Dajriv < 1, (28)

no matter what the wave-length of the particle. J

When the conditions are such that neither (26) and (27), nor (29)

hold the exact method must be used.

For scattering by a field, of potential F(r), which falls off gradually

with distance, the above considerations may be applied to the scattering

through a particular angle 6, In the classical approximation this arises

from that part of the field at a distance a from the origin where V{a)lmv^

is of order 6. In order that the approximation should be valid for such

scattering, we must have a ^ hlmv and V{a) ^ fiv/a. In terms of the

angle 6 the second condition can be written a ^ hjirivd. Thus the two

conditions are normally satisfied if ad ^ Hjmv.

On the other hand, in Born’s approximation, the part of the field

t The following discussion is based on the article by E. J. Williams, Rev. Mod. Phya.

17
( 1945 ), 217 .

t This condition may be obtained from the considerations of § 2. It expresses the

requirement that the value of ly© given by (12) for the case considered should be 1.
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responsible for the scattering occurs at a distance of order hjinvO from

the origin and the approximation is valid if Vifijmvd) mvW. (See

Chap. IX, § 5, for a discussion of the validity of Born’s approximation

as applied to electron scattering by atoms.)

If we take the scattering by a Coulomb field, for which V — Ze^jr,

we have V[a) mvW when a = Ze^jmvW; so, for classical scattering,

Ze^jmvW i.e. Ze^lhv > 1. Similarly, for the Born approxi-

mation to be valid, Ze^mvdlfi <^mvW, i.e. Ze^/liv <1. In this case

either approximation is valid over the whole angular range or not at all.

It is also a peculiarity that both approximations give the same answer,

which is also the exact one. If, however, the Coulomb potential fails to

hold outside a given distance a, say, the effect will become apparent at

a different angle of scattering according to which approximation is valid.

With the classical approximation it will occur when 6 is of the order

Ze^jmv^ay whereas with the Born approximation it will occur when 6

is of the order ^jmva. This becomes important in the discussion of

multiple scattering (see Chap. IX, § 6; Chap. XII, § 2.4) and of the

stopping of fast particles (see Chap. XI, § 4.4, and Chap. XII, §§2.1, 2.3).

6. Summary of methods available for calculating the scattering

by a central field

We have stated in the preceding section the conditions under which

the Born and classical approximations are valid. When neither is

available the complete expression,

m = i I 2 (2«+l)(e*^’^.-l)P„(cos0)|^

derived in Chapter II, must be used; but in many cases it is still

possible to evaluate the phases by approximate methods. These we

shall now discuss, concluding with a brief summary of the method of

numerical integration which must be resorted to when no other method

of sufficient accuracy is available.

6.1. Approximation when the phase shift is small

This has been derived in Chap. II, eq. (27). It is a good approximation

only when the phase shift is very small (usually 0*1 radian or less).

This occurs either when the velocity is very large or, for ti > 0, when
it is very small. In the former case it is usually unnecessary to proceed

by the method of partial cross-sections, Bom’s approximation being

vahd. For the latter case it was shown in § 2 that is very small when
a particle with angular momentum 1)}*^ would not penetrate the
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atom (according to classical theory), i.e. if

^ ^ ^ 2m’

for r given by kr ~ (29)

For values of n satisfying this condition the formula (27) of Chapter II

is satisfactory.

6.2. Approximation when the phase shift is not small

A useful approximation in this case is to use the formula (20) of § 4,

either in the form given there or in the equivalent form

*-
/

(30)

where the lower limit of the integral in each case is the zero of the

integrand.

The approximation is best when the potential is large and does not

vary much in a wave-length. Langerf has given reasons why it may
be improved by the substitution of {n-\~\Y for 7i(n-f 1). In particular

this gives an approximation to t/q for an attractive potential, a case for

which (30) breaks down owing to the absence of a zero of the integrand.

Although it is not possible to formulate a condition as definite as (29)

for the apphcability of these approximations, J experience has shown

that (30) may be used to give good results for phases as low as 0-2 radian.

It has also confirmed the superiority of Langer’s modification. Refer-

ence to results obtained with its use are given in Chap. X, § 4.

Care must be exercised in using the approximation when more than

one zero of the function —^(^+1)
exists. Provided that the

h^

amplitude of the wave in the inner regions, in which the function is

positive, remains small compared with the amplitude in the outermost

such region, then it is a good approximation to use (30) with the lower

limit of the first integration given by the outermost zero. In certain

t Phya. Rev. 51 (1937), 669. The solution required is, strictly, not the one which

decreases as r decreases from the zero of ——V -
,
but the one which vanishes

at r = 0. Danger obtained this solution by substituting in the equation (17), r = log p,

Lr~~^ = O. This gives for O an equation of the same form as (17) but with p in place of

r and with n(n-4- l)/r* replaced by Since p — oo as r - 0 it is the solution

of this new equation which decreases exponentially as p decreases from the appropriate

zero po, which is required. This gives the same result as (30) for but with (n-f- J)* in

place of n(n+l).

J See, however, H. and B. Jeffreys, Methods of Mathematical Physics, p. 490, Cam-
bridge, 1946.
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narrow ranges of values of h, however, the amphtude in the inner

attractive regions may build up to relatively large values by a resonance

effect. It is then impossible to neglect the contribution to the phase

from these regions. The method may be extended to cover such cases

by considering the connexion formulae for the approximate functions

at each zero.

6.3. Variational method

Hulthen| has recently introduced a method for approximate deter-

mination of phases which is analogous to the variational method for

approximate determination of proper energy values.

Consider

where

7 = J
ODG dr. (31)

If rC/(r) -> 0 as r and is a proper function satisfying the usual

boundary conditions

0(0) — 0, O ^ mi(hr—\mT-\-7]^)y (32)

then the integral I exists. Furthermore, if 0 is the exact solution of“““
(33)

satisfying the condition (32), the integral vanishes.

Suppose now we substitute, instead of the exact solution, a function

which differs very slightly from G and is a proper function

satisfying the boundary conditions (32), but with replaced by

We hare then ^ ^

86? ~ C08(kr—
Substituting in (31) we find

00 00

8/ = J
SGDO dr+

J
GD(8G) dr.

0 0

The second integral may be transformed by partial integration, for

00

/'

t Kungl, Fysio» SdUakapets Lund Fdrhcmd. 14 (1944), 1.
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We therefore have

8/ = 2
J
8GDGdr-kSr]„ = -k8r,„,

0

as O satisfies (33).

Thus, if G is varied in such a way that 7 = 0 for every SO, then

8/ = 0 and hence S^q^ = Unlike the case of discrete levels, however,

is, in general, neither a maximum nor a minimum.

To use the stationary property to obtain an approximate value ^ for

77^ and an approximation F{r) for O, the following procedure may now
be adopted. A trial function F(r; c^, Cg,..., c^) is chosen which is a proper

function over the whole range of r, satisfies the boundary condition (32)

at r = 0, and contains s undetermined parameters Ci,C2,...,Cg besides

the phase parameter This function is substituted for Q in the integral

I and the ^+1 parameters determined from the equations

^2,..., C^) — 0,

As a check on the accuracy of the approximation, use may be made
of the fact that, if O is the exact solution of (33) satisfying (32), then

sin 7j„
= —{\rrkf J riJ„+i{kr)U{r)G{r) dr,

0

a result proved in Chap, VI, § 2 . 1 . If the function -F is a good approxi-

mation, then 00

~(j7rA;)*cosec5
J

^^*^+i(^^)U(r)jP(r) dr

0

should be nearly equal to 1 .

This method has been applied by Hulthenf to calculate for poten-

tials F(r) of the form for which it proves very satisfactory.

6.4. Numerical solution of the differential equation for G
The approximate methods are an advantage when a large number of phases

are required and the accuracy aimed at is not too high. For more accurate work
the variation method given above may provide the best procedure if an approxi-

mate analytical expression for the wave functions is also required. J Inmany cases

it is best to proceed with direct niimerical solution of the equations for the

particular values of k and n concerned. With proper setting out of the work this

can be carried out expeditiously. The following procedure,§ similar to that used

by Hartree in solving similar equations arising in his self-consistent field method,

is a very convenient one.

t Loo. cit.

j For further alternative methods see Pais, Proc. Camb, Phil, Soc, 42 (1946), 46;
Ramsey, Proc, Oamb, Phil, Soc, 44 (1948), 87; and Ferretti and Krook, Proc, Phya, Soc,

&0 (1948), 481.

§ We are indebted to Dr. R. A, Buckingham for contributing the description below.

3505.67 x
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We require the solution of the equation

for a sequence of values ajj, ajj*--* of a? at a suitable constant interval A, satisfy-

ing prescribed conditions at Xq.

We write F — 41h^g(x)y, (36)

where Z is a constant chosen to suit the computation. From corresponding values

ofy and F we can form tables of differences, as shown below in Sheppard’s central

difference notation:

^0

x^

Fo

Fi

8F^

8*F,
6yi

8>y,

yo

yi

x^ F,

8F,

S'fi

• • 6yi
SV. y2

^9 F,

SF| Sy*

2/3

As a preliminary to the forward integration, a series expression for y in powers

of x—Xq must be found, consistent with the initial conditions at (e.g. by the

method of Frobenius, or Taylor’s series). This is used to give the values of y, F,

and differences shown in heavy type. Subsequent values of y are found by the

following cyclical process:

(i) Calculate using the equation

SV2 = (36)

with estimated values of h^F^ and (It is advantageous to choose the interval h

small enough for the B^F term to be negligible; also I can be varied to suit any
particular stage of the computation, although most often it is conveniently taken

as xmity.)

(ii) With this value of build up By^ and i/g*

(iii) Calculate using equation (36), form its differences, and verify that the

new value of does not alter 8*
2/2 J otherwise, make the necessary revision.

(iv) Compute 2/4 , F4 , etc., by a similar cycle.

A regular check on the forward integration is provided by the approximate

relation

SV = (37)

This requires the higher differences B^f. and 8*FJ. to be tabulated, in itself a
valuable check on the rest of the work. The computed value of 8*

3/,. should not

normally differ from the right-hand side of (37) by more than one unit in the

last digit. Provided the discrepancies alternate in sign, one can then be fairly

confident that the integration is proceeding without serious error.

When y assumes an oscillatory form, the interval h can be adjiisted at con-

venient stages in the calculation to keep the values of 8*
3/ at a reasonable size.

For accuracy to 3 or 4 figures in 3/,
however, not less than 8-10 intervals should

be kept in each half-oscillation.
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An alternative method of integration is that of Gauss-Jackson,f which uses

the relation

Vr = (38)

where denotes the second sum of the function F, in place of (36). The

scheme of differences is as follows:

8-*Fo F. yo
8-»F.

5-»Fi F, yi

^2

8-‘F,

8-*F, P.

'

8-iF,

F, 2/8

In this method only and need to be prescribed initially; then F^ and

are determined by (36), and 8”^jF\ by equation (38), assuming that h

is small enough for the h^F term to be negligible. Thus all the quantities in

heavy type are determined, and we proceed with the forward integration as

follows:

(i) Estimate i 2̂ » or rather -^F^^ and compute y^ from equation (38).

(ii) Use this y^ to find F^^ by equation (36); verify that the estimate of y^ is not

thereby affected, or if it is, make the necessary revision.

(iii) From F^ build up 8^^F| and h^^F^y and thence proceed to estimate y^.

This is a somewhat simpler method than the previous one, and lends itself to

oven greater precision, as by suitable choice of I accumulation of rounding-off

errors in the summation can be kept negligible. For this purpose either Z = 2-6

or 6 is convenient in practice. A suitable overall check is provided by equation

(36), which is applied in analogous fashion to (37) in the previous method.

To evaluate the phase angle the forward integration is continued until the

further effect of the scattering potential is considered negligible. At such values

of Xy y can be written

y = (39)

where j,{kx) = {iTxj2k)iJi{lcx). r]„ may then be determined by smooth connexion

of the integrated solution to (39) for large x.

t J. Jackson, Mon. NoU R. Ast. Soc. 84 (1924), 602-6.
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GENERAL THEORY OF ATOMIC COLLISIONS

In Chapters II and III we discussed the scattering of a stream of

particles by a centre of force. The great majority of collision pheno-

mena, however, involve some reaction of the scattered particle on the

scatterer. We shall now develop a more general theory applicable to

such problems as the following:

(1) The excitation of atoms and molecules by electron impact.

(2) The excitation of vibration and rotation of molecules by the

impact of other molecules.

(3) The transfer of excitation between two atoms or molecules on

collision.

(4) The excitation of atomic nuclei by bombarding nuclei.

In all these cases there is a direct energy interchange between the

relative translational motion and the internal motion of the colliding

systems. There is no transfer of particles between the colliding systems

on impact; this, however, occurs in a number of other types of collision

which are of equal importance. These ‘rearrangement' collisions include

the following:

(1) The capture of electrons from atoms by positively charged

particles.

(2) Emission of particles from atomic nuclei, with resultant capture

of the incident nucleus.

(3) Collisions of two molecules, resulting in a redistribution of elec-

trons and nuclei.

(4) Collisions of electrons with atoms, in which exchange of particles

takes place between the incident beam and the scattering atom,

the incident electron being captured and the atomic electron

ejected.

Since one cannot distinguish experimentally between the scat-

tered and ejected electrons, and since, moreover, the wave func-

tion used must be antisymmetrical in the coordinates of these

two, this type ofproblem requires a somewhat different treatment

to the other three. The particular case of the collision of two
similar particles, which may be reduced to a one-body problem,

has already been considered in Chapter V.

In what follows, we shall distinguish the two types of collision by the

terms ‘direct’ and ‘rearrangement’ inelastic collision.
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Owing to the complexity of the phenomena, it is necessary, except

in very special cases, to use approximate methods of treatment. For
collisions in which the relative velocity of the colliding systems is large

compared with the velocities of their internal motion, there is no diffi-

culty in obtaining an accurate approximation (‘Bom’s approximation’);

but under other circumstances no general method has yet been

developed, and special methods must be used for particular problems.

However, certain conservation theorems may be derived which are

valid under general conditions. These may be used to place limits on

the size of the cross-sections and to provide a check on results obtained

by approximate methods.

1. Conservation theorems.f Maximum cross-sections for given

angular momentum
We consider a stream of particles of mass m and velocity v incident

on a scattering centre, as in Chapter II, but we now suppose that the

particles may undergo inelastic, as well as elastic, collisions with the

centre.

As in Chapter II we resolve the incident wave into partial waves of

angular momentum At large distances r from the centre

the radial function representing the incident partial wave of order n
will then be

i \
l)sm(ir—|n7r),

where k — mvlh. Corresponding to this there wiU be an elastically

scattered partial wave of asymptotic form

pikr

The partial elastic cross-section Q^i will then be given by

4:7T

271+1
|C„I (

1
)

If only elastic scattering can occur, then there can be no net radial

flux of particles, with given angular momentum and the initial energy,

towards the scattering centre. When inelastic collisions can also occur,

the net inward flux will be equal to the flux of particles which have

suffered inelastic collisions. At a great distance r from the centre the

net inward flux will therefore be given by

r-H
(27I>+1)

4:7r
(
2
)

where Ql[^ is the partial cross-section for inelastic collisions.

t Mott, Proc. Roy, Soc. A, 133 (1931),^ 228; Bohr, Peierls, and Placzek (we are

indebted to Professor Peierls for Toaking this work available to us in advance of

publication).
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The net inward radial flux of particles possessing the initial energy

is given at a large distance r by

2mi\ dr ^ dr

)

where ^ > (^)

and is therefore

^[-K2«+lK-cJ+A:|c„P]. (4)
771/

It is easily verified that this flux vanishes when

Cn = (2w+l)(e“’/«— l)/2iA-, (5)

rj^ being a real phase. When this is so the elastic scattering may be

represented in terms of real phase angles following the formulae (17)

and (18) of Chapter II, even when the interaction with the scatterer

cannot be represented by a potential V[r).'\ On the other hand, if

inelastic coUisions can occur, this representation is no longer exact

though, if the chance of such a colHsion is small, it will remain a good

approximation.

The existence of inelastic collisions can be taken into account by allowing the

phase rjn in the expression (5) to become complex. Thus, writing

Vn “
we have

QJ = ^ (2n+ l)e-»*%{cosh 2/x„— cos 2A„}, (6)

QZi = (2n+ l)e->'^sinh 2ju„. (7)

Equating (2) and (4) and using (1) gives

where is the partial cross-section for aU collisions, both elastic and
inelastic.

Since |c„P > 1^^

where

t See, for example, Chap. X, § 5; Chap. XIII, §§ 1.1, 1.2, 1,3.
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Hence, as

(8)

the equality only arising when there is no inelastic scattering.

Further Cm = Q^t~Qeh

The maximum value of the right-hand side occurs when

Ql>t = i«S.ax,

BO CS.<f,(2«+l). (9)

In this case, the equality only arises when Q^i is also equal to

7r(2?i+l)/P.

These formulae are especially useful in limiting cross-sections which

can occur under resonance conditions of one sort or another. They only

apply to partial cross-sections, no general rules being available for the

total cross-section. However, if the range of the scattering field is small

compared to the wave-length, only the zero-order partial wave is

scattered and we then have

When the range R of the scattering field is well defined, it is also possible

to obtain some useful limits when the wave-length is very short com-

pared with iJ. The partial cross-sections for which

n < kR
will alone be important. Then

kR kR

Qtot — 2 Qtot> Qel = 2 Qeh
0 0

kR

^ Qel 2 ^max
0

< 47rjS2Qel-

This gives, in the same way as (8) and (9),

^tot 47ri?2,

Qin ^ 'JtR^,

the equality holding in the latter case only when Q^i is also equal to tt

This last result seems paradoxical if one considers the scatterer to be

an inelastic sphere of radius R, For this case the inelastic cross-section
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is clearly It is not so obvious how the equal elastic cross-section

arises. The explanation is exactly the same as for the problem of the

elastic scattering by a rigid sphere discussed in Chap. II, § 5. It was

shown there that, for such a sphere, the total elastic cross-section for

short wave-lengths is not ttR^ but 2rrR’^, the doubling being due to

shadow diffraction which leads to elastic scattering concentrated within

a cone of angle 1jhR about the direction of incidence. This effect arises

also in the present case.

It is important to notice, for certain future applications, that the

above arguments apply to collisions in which the incident particle can

be absorbed by the scattering centre.

2. The collisions of electrons with hydrogen atoms. Born’s

approximation

In order to make clear the method which must be employed in dealing

with inelastic collisions, we will first consider the simplest type of colli-

sion which occurs in practice, that of electrons with hydrogen atoms.

The mass of the electron is small compared with that of the proton, and

the motion of the latter in the collision can be neglected.

We consider a beam of electrons falling on a hydrogen atom initially

in the normal state. The intensity of the beam is such that one electron

crosses unit area per unit time. We have to find the number of electrons

that are scattered per unit time through an angle 0 into a solid angle

dw after having excited the atom into its wth state. This number,

IJ6) dco, has the dimensions of an area and will be called the differential

cross-section for scattering into the solid angle doj. The total cross-

section corresponding to the excitation will be obtained by integrat-

ing over all angles, so that
27r rr

= Jj4{fl)8in0d0#. (11)

0 0

The wave equation for the system of incident electron and atom is

where the incident electron is distinguished by the suffix 1, the atomic

electron by the suffix 2, The energy E is the sum of the energy E^ of

the atomic electron in its ground state and of the kinetic energy \mv^

of the incident electron.

We may expand the function Y(ri, Fg) in the form

(
13

)
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where the functions are the proper functions for the hydrogen

atom, satisfying . ,3 2\

(8^’’+^-+'7K
= '>' (‘‘I

The integral sign denotes integration over the functions of the con-

tinuous spectrum.

Substituting (13) in (12) and using (14), we obtain

(2+ (16)

Multiplying both sides of this equation by ^*(^"2) integrating over

the coordinate space of the atomic electron, we obtain

= /
(£-0'r(r..r«(r.)^,. (16)

For large the right-hand side vanishes, and satisfies the wave
equation

V2-
'~W~

(F-F„) F„ = 0, (17)

which is the wave equation for a free particle of energy E—E^. The

associated wave-length is where

kl = %n^m{E^E^)jh?. (18)

We notice that this wave-length is only real if > E^, i.e. if the

electron has enough energy to excite the nth state of the atom. In this

section we consider values of n for which this is the case.

Since the conditions of the problem require the electron to be incident

on an atom in its normal state, the function must represent the

sum of an incident and scattered wave; thus, must have the asymp-

totic form ^ ^). (19)

The functions must represent scattered waves only, and so have

Mymptotic form r,~ (20)

From (20) we deduce that is the number of electrons per

unit volume at distance r from the atom, which have excited the state

n. Of these, the number crossing unit area per unit time is proportional

to k^r-^\f^\^, whereas in the incident beam the number crossing unit

area per unit time is proportional to k^. Hence we have (cf. Chap. II, § 1)

Ud)d<o = ^\Ue,<t>)\^da.. (21)

The calculation of the asymptotic form of the functions F^(ri) cannot
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be carried out exactly. For high velocities of impact, however, we may
readily obtain approximate formulae by a method due to Born.f Under

these circumstances the perturbation of the incident wave by its inter-

action with the atom will be small.J We take, then, as zero-order

approximation for T, simply

T = exp(iiono.ri)^o(>'2). (22)

Here exp(iA;ono.ri) is the plane wave, representing the motion of the

incident electron in the direction of the unit vector n^, when there is

no interaction with the atom. Substituting (22) on the right-hand side

of (16), we obtain

(V*+*^)-F;(ri) = J
J^-^)exp(ifco (23)

The solution of this equation with the correct asymptotic form (20) may
be obtained by the method of Chap. VI, § 4, the solution being

Fn(T) =

^ JJ
exp(i^o Ho • ri)|^- £)'/'o(r2)'/'J:(r2 )

dr^ dr^. (24)

The as3uiiptotic form of this solution is§

K(r)^

JJ
exp{i(^o“o-^nn)-ri}|^-^jMr2)^/-*(r2) dr^dr^, (25)

where n is a unit vector in the direction of the vector r. Hence

m -

It is possible to proceed further by this method of approximation, by

substituting the expressions (24) for in the function T on the right-

hand side of (16) and integrating the equations a second time, and so

on. However, this method is very tedious|| in practice and it is better

to start from more accurate initial approximations for T in (16); these

will be discussed later in §§ 6-8.

3. Two-body collisions in general

These results may be generahzed to apply to the collision between any

two atoms or molecules or ions. The motion of the system may be

t Zeits.J. Physik, 37 (1926), 863, and 38 (1926), 803. J Cf. Chap. VII, § 1.

§ Cf. Chap. VII, § 1. II
Cf. Chap. X. § 7.
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described in terms of that of the centre of mass of the complete system,

the relative motion of the centres of mass of the two bodies, and the

motion of the individual particles of each body relative to the centre

of mass of each. Of these the motion of the centre of mass of the com-

plete system is irrelevant and may be separated out. The resulting

equation may be compared with (12) above. The Hamiltonian equation

(12) is compounded of three parts, namely,

representing the unperturbed motion of the incident particle;

representing the internal motion of the atomic electron; and

(C) minus the interaction energy,

Let us now see what terms must replace these in the general case.

For the relative motion we have

where r denotes the relative coordinates and M is the reduced mass of

the system, i.e. if M2 are the masses of the two bodies,

M - M^M2l{M^+M2).

For the internal motion we have

and {Fj,(r6)—£?6}t;(r6) = 0, (28)

where are the Hamiltonians of the unperturbed atoms. Corre-

sponding to these equations there will be sets of proper values and

proper functions . v / v

El,

For convenience of notation we shall not distinguish the two sets of

functions, but shall denote each pair of states of the two systems by

a single suffix n. The wave function ^^(r„, r^) of the two systems will

then be the product of two functions, corre-

sponding energy value E^ will be the sum E^+Ef. will satisfy the

equation
{HJ,T,)+H,{r,)-E,-E,}^ = 0 . (29)
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Finally, we have an interaction term F(r,r„,rj,). The complete wave
equation is now

^ F(r, r„, r,)]^ = 0, (30)

and it is easily found by the method of § 2 that the differential cross-

section (in relative coordinates) for the transition from state n to state

m of the combined system will be given, within the range of validity

of Bom’s first approximation, by

In^O)

4:7r^M^k
I r r r ^

~
I J J J

>

(31)
where = 27rMvlh,

= (32)

and V is the initial relative velocity of the colliding systems. To obtain

this differential cross-section in the coordinate system in which one of
the bodies is initially at rest, it is only necessary to apply the classical

laws of conservation of momentum and energy. The resulting formulae
are given in § 10 of this chapter.

In the same way we may readily generalize all the formulae of § 2.

4. Rearrangement collisions

4.1. Electron exchange

As an example of the type of phenomenon to be considered under
this heading, we return to the problem of § 2, namely, the collision

between an electron and a hydrogen atom. We obtained in § 2 the
probability that the incident electron should be scattered into a given
solid angle after exciting the nth state. It is also possible that the
incident electron may be captured into the nih. state, and the atomic
electron ejected. We refer to this phenomenon as electron exchange,
and must now calculate its probability.

In order to calculate the probability of direct scattering, in § 2 we
expanded the wave function 'F(ri,r2 )

describing the collision in the
form

V=(| + J)J.(r.)Wr,). (33)

where FJ, represents an incident wave and a scattered wave, and a
scattered wave, so long as the excitation energy of the state n is amnllAy

than the energy of the incident electron. When this is no longer the
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case, falls off exponentially; the values of n in (33) which correspond

to the continuous spectrum thus give us the possibility that the incident

electron is captured and the atomic electron ejected. To obtain the

probability of this event, we expand (33) in the alternative form

'F=
(I + /)(?>, (34)

Assumingf that has asymptotic form

(35)

the probability that the incident electron is captured into the nth state,

and the atomic electron ejected into the solid angle dco, is

(36)

We must state here that we may only treat the electrons as dis-

tinguishable in this way if the spins are antiparallel. For the scattering

formulae with unpolarized beams, cf. § 4.3.

We must now show how to calculate The wave equation is

It was shown in § 2 that satisfies

In the same way, substituting (35) into (37), multiplying by ^n(*'i)>

integrating over all arj, we obtain

^ J
(39)

This equation is exact; to solve it, we assume various forms for T* on

the right-hand side, and obtain a solution of the form (35) by the

methods of § 2. It will be noticed that the approximate solution thus

obtained is not an expansion of the approximate solution of § 2. In

choosing an approximate T we note that T must satisfy

/
{T-^;(r,)^„(r,)}^*(r,) dr, = 0

(40)

/{'F-(?„(r,)0„(r,)}^S(r,)dr, = O.

Ifwe require results valid only within the accuracy of Born’s approxi-

mation, we take on the right-hand side of (39), as in § 2,

T = exp(t*o n®
.

(4:1)

t No proof of this has at present been given, but a proof should be possible.
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and obtain

J
j~^j^^;j(ri).^o(»'2)exp(iMo-ri)<^'ri- (42)

Solving this equation by the method of Chap. VI, § 4, we obtain for

the asymptotic form of

On ~ r-i exp(ii„ r)sr„(0, ^),

where

= -^ff ^jl/'n(ri)«Ao(r2)expt(*ono ri-^»“-r2)dTidT2

(43)

and n is a unit vector in the direction 6, <f).
It is to be noted that the

form (41) does not satisfy the equations (40), but for high-velocity

impacts when Bom’s approximation is valid the error made is small.

Further discussion of the equation (39) is given in Chap. X, § 6, and

Chap. XI, § 5.

4.2. Rearrangement collisions in general

Before discussing the effect of the identity of the electrons on the

formula for the scattered intensity we shall generalize the method to

apply to rearrangement collisions in general. We require the proba-

bility that two systems A and in the Tith and mth states respectively,

become rearranged on impact, producing systems C and D in the 5th

and tth. states respectively. In order to follow the method used for the

simple case above, we must write the wave equation for the complete

system in the form which is most relevant to the discussion of the final

systems C and D. Instead of the coordinates which refer to the initial

state, we choose now as coordinates the relative coordinates p of the

centres of mass of the final systems, and the internal coordinates r^,

of the systems C and D referred to their respective centres of mass.

The equation (30) may now be written

= 0, (44)

where M' is the reduced mass, McMJ{Mc+Ma)y of the final systems,

Hcf the Hamiltonian operators of the internal motion of the bodies

C and 2>, and F(r^, r^, p) the interaction energy between C and D.

We distinguish a given pair of stationary states of the systems C and

D by the suffix s and write the corresponding wave functions and

energies as respectively. ^«(rc,r^) is then the product of

two wave functions ^^e separate systems, and the
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sum of the corresponding energy values, This notation corre-

sponds exactly with that used in § 2.

Comparing the equation (44) with (37), we see that the formula of

§4.1 may be generalized by writing

M' for m, for M^i)>

-F(r„,r^,p) for <i>,{T„Ta) for
\^2 ^12/

To the accuracy of Born’s first approximation, we obtain then, for the

differential cross-section (in the relative coordinates p) corresponding

to the rearrangement in which the 5th state of the systems C and D is

excited, the formulae

^ F(r„r^, p)exp{t(ino.r-A;;n.p)}x

2

X^o(>‘a,r6)^,(rc,r<,)dT„dTj,dp dta, (45)

where k = 27TMvlh, kg = 27TM'Vgjh, v, Vg being the initial and final

relative velocities respectively.

As an example we may take the capture of electrons from atoms

by a-particles. In this case r is the vector distance between the centre

of mass of the atom and the a-particle, p the distance between the

centre of mass of the ionized atom and the centre of mass of the helium

ion formed by the capture. For the internal coordinates we have

initially the coordinates of the electron relative to the centre of mass

of the atom and, finally, the coordinates of the same electron relative

to the centre of mass of the helium ion. The application of the formula

(45) for this case is discussed in Chap. XII, § 3.4.

4.3. Effect of the exclusion principle on the scattering formulae^

We return in this section to the problem of the scattering of electrons

by a hydrogen atom. We limit ourselves to the case when the energy of

the incident electron is so low that excitation is impossible. Then the

collision is described by a wave function T(ri, Tg) with asymptotic form

Y ~ [exp ikzj^+r^^f{ej)exp ihr^l^r^) {r^ large),

~ [^2“ (^2 large)-

If the electrons were distinguishable one could deduce that the number

t Oppenheimer, Phy$. Eev, 32 (1928), 361.



144 THEORY OF ATOMIC COLLISIONS VIII, § 4

of electrons scattered was proportional to |/ and the number ejected

to \g\^. However, as shown in Chapter V, one must use antisymmetrical

wave functions. The wave function symmetrical or antisymmetrical in

the space coordinates is

'I'(ri,r2)±'F(r2,ri),

which has asymptotic form, for large say.

Using either formula, one obtains the result that the number of electrons

scattered or knocked into the solid angle dco is

\f{e)±g[e)\^do^.

As shown in Chap. V, § 5, we must combine these formulae in the ratio

1 to 3 for unpolarized electrons. The total number scattered into the

solid angle dco is thus

(46)

Let us now consider the case of electron collisions with helium. We
denote the second atomic electron by the suf&x 3, so the collision is

described by a wave function

T ^ '‘

3) (»‘i
large),

~ fg) (rg large),

g{dz)rz^e^’"’‘<p{r2,ri) (rg large).

By following through an argument very similar to that used above for

hydrogen, we find that the total number of electrons scattered into the

solid angle dw is

5. Approximate methods for slow collisions. The method of

distorted waves

The first approximation in Born’s method is only valid when the

energy of relative motion in the collision is great compared with the

energy of the internal motions involved. For an important class of

collisions this condition is not satisfied, and it is necessary to develop

methods of practical value for such cases. We shall describe four

methods, to be referred to respectively as the methods of distorted

waves, of the strongly coupled equations, of perturbed stationary

states, and of the collision complex. In this section we discuss the

first of these.

\f—g\^ do,. (47)
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Generalizing formula ( 16) of § 2, we see that the functions i^,i(r) satisfy

the series of equations

[V*+i*F„(r) =^ JJ
V{r, r„, r,)T0* dr^dr, {n = Q,\, 2,. (48)

Writing
m

and (49)

we have (V2+t2)j;(r) = !!^2^mK„n- (60)

m

Born’s approximation is obtained by taking on the right-hand side

of (50)
^„ = expKno.r); = 0 (m ^ 0).

We make now the less drastic assumption that the non-diagonal matrix

elements are so small that we may neglect all products on the

right-hand side except Von Fq, which involves the incident

wave. We obtain thus the series of equations

== 0, (51.1)

= ^Fo„(r)Ji{r) (« # 0). (61.2)

If Too(^)» ^nn{^) spherically symmetrical, one may obtain a formal

solution ofthese equations, satisfying the boundary conditions (19), (20),

by the methods of Chapters II and VI. In Chap. II, eq. (16), a solution

of equation (51.1) was obtained satisfying the boundary condition (19),

i.e. having the asymptotic form

(52)

We denote this solution by
If we substitute this form for i^(r) in the right-hand side of (51.2),

we obtain an inhomogeneous equation for FJ{t) of the form

[v«+**_?^F„„(r)]i; = 3jr,e,<i>). ,(63)

The problem of obtaining solutions of this equation with the asymptotic

form (20) has been solved in Chap. VI, § 3. If we denote by 0f,^(r, d)

the solution of the homogeneous equation

[v*+^-^F„„(r)]5 = 0 (64)

•asM.e? *
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which has the asymptotic form

~ function of ff,

the asymptotic form of the required solution of (51.2) is

F„(r) ^ -r-h^^nr^
j

VUr')Fo(r', F)B„(r', n-O) dr', (55)

where cos© = cos0cos0'+sin0sin0'cos(^— (56)

d being the angle of scattering. Referring to (20) and (21), we see that

the differential cross-section corresponding to excitation of the nth

state is now given in relative coordinates by

m = ^ ^^*1/JJ
V{T,T,,T,)^,rnFo{r',e')Ur',^-&) dr,,dr,dr'^.

(57)

This formula reduces to Bom’s expression (31) if we take the functions

3n plane waves. We see then that this method takes into

account the distortion of the incident and outgoing waves by the

scattering field. The function -PJ)(^>^) represents the motion of the

electron in the field Vooir) of the initial state, 5n(^ >
^—®) fhat in the field

Tnn(^) ^he excited state.

Formula (57) is applied in Chap. XI, § 5, to the scattering of electrons

by atoms, and in Chap. XII, § 3.5, to the excitation of vibration and

rotation in molecular collisions.

A similar formula may be derived for rearrangement collisions. Thus

in formula (45) the plane waves e^**”® **, p are replaced by FQ(r,0),

^^(p,7r—^), where Fq, are the proper solutions of

= 0 ,

= 0,

which have the asymptotic forms ofa plane wave and the corresponding

scattered wave. Foo and Ugg are given by

Foo = //F(r.r„,r,)|^o|^dT„dr„

^. = ffV(^,,r^,p)|^,l^dr,dr^.

6. Approximate methods for slow collisions. The case of strong

coupling

6 . 1 . The case of exact resonance

The validity ofthe previous method of approximation depends on the

smallness ofthe non-diagonal matrix-elements of the interaction energy.
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In considering the excitation of the nth stationary state by the impact

it is thus only necessary to include the interaction of two waves, the

incident and elastically scattered, and that scattered after excitation of

the nth state. Further, the effect of the reaction of the inelastic on the

elastic scattering need not be taken into account. We may therefore

regard the method as one of successive approximations to the solution

of the simultaneous equationsf

[VH*§-(87rW/A^)FooFo = (8,rW/A^)Fo„j;,

[V2+4_(8^W/A^)F„„]^; = (87rW/A2)F„„Fo,

on the assumption that the matrix-element Von is small. Now in certain

other cases it is sufficient to consider the interaction of two states only,

but the matrix-element To^(r) associated with these states may not be

small. Such cases occur when the states 0, n are nearly in resonance,

i.e. the energy difference AE between the states is small compared with

that between any other pair of states. We then obtain as before the

simultaneous equations (58), but the method of successive approxima-

tions is not in general applicable. It is then more difficult to obtain

a satisfactory method of treatment.

In the special case of exact resonance between the two states (as, for

example, in considering electron transfer from a helium atom to a helium

positive ion) we may obtain an exact solution, but for other cases more

complicated methods must be used. We first consider the special case.

Writing hi ^ k\ — in (58), and assuming that the field is the

same as Foo, we obtain the equations

[v+i“-?^Ii,{r)]ii(r) = ^V^^T)F,{r), (68.1)

[v+ii_?!^F4r)]F.(r) = (59.2)

These equations must be solved subject to the boundary conditions

that for large r ^
<f>),

F„{r)^ (60)

By addition and subtraction of (59.1), (59.2) we obtain the independent

equations

-^^^Mn}\{Fo+Fn} = 0, (61.1)

-^{Voo-Von}]{Fo-Fn] = 0. (61.2)

t It is assumed that ==
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If the functions TJq, are spherically symmetrical, we may solve

these equations by the method of Chapter II. We obtain (Chap. II,

eq. (17)) solutions of asymptotic form

K+Fn ~ 2 (2«+ 1)^»(C08 0)1, (62.1)

2 (2«+l)(e‘‘’®'-l)^.(cos0)l. (62.2)
L

^
J

For definitions of the phases, 8^, cf. Chap. II, § 1. Solving (62) for

we obtain ,

i; ~ 2 (25+ l)(e2^’^*-e2^'^')P,(co8 0). (63)

8

The differential cross-section corresponding to transfer of excitation

will then be

W) = 1^2 2 (e‘*'’''-«‘‘'*')(2«+ 1)^»(C08 0) ^d<o, (64)

8

and the total cross-section

a

The maximum partial cross-section for charge transfer between par-

ticles of given relative angular momentum (given 5
)

is (25+l)7r/A;^ in

agreement with § 1 (9).

We are now in a position to examine the condition of validity of the

method of distorted waves described above in §3.1. Applying this

method to the problem discussed in this section, we obtain, since

= Vnn, the formula

= JIJ
V^{r')F,{r',e')Ur',^-Q)dr'hmedd. (66)

0

Using the expansions

Fo{r,S) = (2«+l)tVy*J’J(r)i^(cos0),

a

5o(n ^-0) = ^2 (2«+ l)i-*e'’"^l!(^)J’*(co80). (67)

8

we obtain

®" = P2 J
*)’. (88)



vni, §6 METHODS FOR SLOW COLLISIONS 149

To prove the validity of the method of distorted waves we must

demonstrate the approximate equality of the expressions

sin(v,-S,).
J
FoJn(r)}V dr. (69)

Provided both quantities are small, this may be shown by the method

of Chap. II, § 2. Thus the condition of validity of the method of dis-

torted waves is that the second expression in (69) should be small com-

pared with unity. The range of validity of the distorted wave method

P

I

0
Increasing interacbion energy-

Fig. 18.

of approximation for the calculation of the probability of transfer of

excitation is illustrated in general terms in Fig. 18, which also shows the

manner in which the approximate method becomes inaccurate.

In this figure the probability P of energy transfer for a given relative

angular momentum is represented as a function of a parameter i which

is taken to indicate the effective magnitude of The relative velocity

of the impacts is considered fixed. As f increases, the probability of

transfer will increase from zero towards a value unity. After this value

is attained the probability will oscillate as shown. The distorted wave
method of approximation is valid only in the region of the initial

increase of probability from zero. It predicts a monotonic increase of

probability with f , and we must expect it always to indicate too great

a probability of the transfer process. Similar behaviour will be manifest

in the behaviour of the probability as a function of relative velocity of

impact, for a fixed value of the parameter Thus at low velocities the

distorted wave method will give too large a probability,f

* t Cf. Chap. XI, §§ 3.2, 3.3, 6.2; Chap. XII, § 3.
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6.2. Inexact resonance

When the resonance is no longer exact, no exact analytical solution

of the coupled equations (58) can be obtained. However, in most cases

of practical importance the wave numbers h and are very large when

measured in atomic units, l/a^. The variation of Vqq, 1^^, and Vq^ is

then very small within a wave-length and an extension of Jeffreys ’s

method (Chap. I, § 6, and Chap. VII, § 6.2) may be used to obtain an

approximate solution, valid particularly when the potentials are large.

The problem is to obtain solutions F\^ of the equations

which are proper functions with asymjjtotic form

Fl ~ ^(2i+l)exp(ii7j)[sin(*r— |Z7T+-i7j,)+g^exp{i(^r— (72)

P’n~^(2^+l)2nexp(i^„r). (73)

The effective cross-sections Qq, for elastic and inelastic collisions

respectively, are then given by

“ F 2 teolsi" vi). (74)

=
1^2 <^'+

Stueckelbergt obtained a ‘classical’ approximation, essentially an

extension of Jeffreys’s method to the coupled equations, by expanding

F\ in the form

Fl = r-iexp{A-i(;So+A^i+A^>52+ ..•)}• (76)

The equation obtained for Fl by elimination of F\^ from (65) may be

then solved by neglecting terms of degree greater than unity in h.

The form of the solution depends on whether the function /Q(r)—/^(r)

has a real positive zero R or not, /q and being given by

/o
il 1

O
1 Z(?+l)

(77)

A ^(^+1)
^2

(78)

I Phys, Acta, 5 (1932), 370.
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The case of most interest is the one in which R does exist. Stueckel-

berg finds then that

Ig'nl’* = ye-2*(l—c-2*)sin*T, (79)

where 8 = [(2.r)i?7g„/{2(?7;«-t7;„)(/„+V(/§-C^§J)*}]r=ie. (80)

R R

and T = j gl dr— J
gf* dr, (81)

the lower limits in each case being the zero of the integrand and

Qo^gn - i(/o+/„)±M{/o-/„)*+4C7§„}*. (82)

We now consider the relation of this formula to that given by the

method of distorted waves
00

= l
J
UMr)mr)dT\ (83)

0

where 3fn ^re the appropriate solutions of (70) and (71) with the

right-hand sides equal to zero.f By substituting the approximationsJ

5j(r) ~ (*V/o)isin{j7r+/*} (r > ro), (84)

5n(»-) (r > r„), (86)

Tq, being the respective zeros of/^ and/^, and ignoring contributions

arising from r < r^, in which the functions are decreasing exponen-

tially as r decreases, we find, by the application of the method of

steepest descents§ i

Wn? = 2|8„sin%, (86)

where Sq differs from S only in that (/q— replaced by /J and

Tq from T in the replacement of and by /q and respectively.

Thus, comparing (86) with (80) we see that, under ‘classical conditions’,

in which k and are large, the method of distorted waves will give a

good approximation if

< 1. (87)

In view of the classical conditions which prevail when the formula

(80) is valid it is to be expected that a detailed picture of the process

can be given. Fig. 19(a) represents the initial and final potential energy

curves for the reaction. At infinite separation the two curves must tend

t 0ro» Un must vanish at r — 0 and have the asymptotic forms

gfo sin(lT~ JZff-f ^ sin(A;^r~i^7r+iCn).

t See Chap. I, § 6, and Chap. VII, § 6.2.

§ H. and Jeffreys, Methods of Mathematical Physics^ Cambridge (1947), p. 472.
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to limits differing in energy by K^{k^—k^l2M. In the absence of inter-

action between the two levels the curves would cross at r = JS and

there would be no probability of a transition. A finite value of

prevents crossing and the shape of the curves in the neighbourhood of

r — jB is as shown in Fig. 19(6).

We may now follow the course of events as the systems approach

from the initial state A, On arriving at the crossing-point there is a

chance P that the systems will jump from curve I to curve II. In

either case they will continue to approach until the repulsive barrier

Fig. 19. Illustrating the interaction of potential

curves at a crossing-point.

becomes too large, after which they will again begin to separate. On
return to the crossing-point there will be a chance P of a jump from

either curve to the other. The total chance that, after finally separating

from the crossing-point, the systems will be found on curve II instead

of curve I will be 2P(1— P). Landauf and ZenerJ have independently

calculated P under classical conditions and they obtain, in terms of (80),

P == This is what we would expect from Stueckelberg^s result for,

in view of (79), the average partial cross-section should be

47rP(l-P)(2Z-fl)/F.

The second point to notice is that the partial cross-section is

small, not only when 8 is small, but also when it is large. In the latter

case, which arises either when, at the crossing-point, is large, the

velocity Mfjfi is small, or the difference in slope of the potential curves

is small, we have adiabatic conditions.

To obtain the total cross-section use may be made of the fact that

becomes very small for such values of I that the zeros of the functions

rz. Phya. Sow. Un. 2 (1932), 46.

t Proc. Roy. Soc, A, 137 (1932), 696.
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/o>/n outside the crossing-point. This will occur approximately when

I = JcR or R, whichever is the smaller. Hence

JcJRf JCftR

0

> ttR^.
(
88

)

To obtain a large cross-section it is necessary, not only that R should

be large, but also that S should not be too large or too small for most

values of 1. This matter will be discussed in further detail in Chap. XII,

§ 3.3, in connexion with transfer of excitation and of charge between

slowly moving atoms and ions.

The case where no crossing-point exists is at least as important for

the discussion of slow collisions between atoms. It has also been con-

sidered with the classical approximation by Stueckelberg.*}* However,

as the formulae obtained are not of such wide generahty as for the case

discussed above we defer consideration of them until Chap. XII, § 3.3,

where they will be apphed to specific problems.

6.3. Rearrangement collisions

The theory of the preceding section may be apphed to rearrangement

coUisions involving electron transfer between two atoms or ions, pro-

vided the change of momentum of the electron transfer may be neg-

lected. This change is zero in the case of exact resonance and may also

be ignored for colhsions in which the atoms are moving slowly compared

with the atomic electrons. For fast colhsions it cannot be ignored, but

Born’s approximation (45) may then be apphed (see Chap. XII, § 2.2).

In other rearrangement colhsions the strong coupling method is much
more difficult to apply, for the appropriate simultaneous equations for

the functions Fq and 0^ are no longer differential but integro-differential.

The problem of electron exchange in elastic scattering wiU be discussed

in terms of these equations in Chap. X, § 5. Otherwise no attempt has

yet been made to use them.

7. Approximate methods for slow collisions. The method of

perturbed stationary state wave functions

In calculating the probabihty of excitation of a given state by the

previous methods we have neglected altogether the interaction of all

the states except the initial state and the state under consideration.

t Loc. cit.



164 THEORY OF ATOMIC COLLISIONS VIII, § 7

This neglect may often be serious. We now consider a method which is

applicable under nearly adiabatic conditions, the relative velocity of the

colliding systems being slow throughout the encounter. It depends on

the use of stationary state wave functions which are already perturbed

by the interaction of the colliding particles, treated as though at relative

rest. The kinetic energy of the relative motion is then introduced as the

small perturbation producing the transitions. This procedure does

include a partial allowance for interaction between different states as

the perturbation of the stationary state wave functions need not be

small.

We restrict ourselves to cases where both systems are spherically

symmetrical.

As before, we have to solve the equation

with the usual boundary conditions. We first consider the equation

= 0 (90)

in which r, the relative coordinates of the two systems, appear as para-

meters. We assume that a solution may be obtained for any value of

r, leading to a set of proper functions Xn{^^ ^b) Proper values

ejr). These functions are classified by their behaviour for large r. We
distinguish by the sufiSx n that energy value which tends, as r oo, to

the nth. value of the equation

= 0. (91)

The energy €^(r) may then be written

€„(r) = E„-7]^{r), (92)

where 0 as r -> oo. The functions Xn form an orthogonal normal

set with respect to the coordinates r^, for all values of the parameter

r. It is therefore possible to expand T in the form

"^ = 1 Xn{r, r„, Tf,)F„(r), (93)
n

and, as before, we require solutions for the functions F^{t) which have

the asymptotic form (20), representing outgoing waves.

On substitution in (89), remembering that

[ ^ai^a) ^b(^b) ^a> [^n(^) ^rilXny (94)
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2
-l{En-rin{r)-E]XnFn. (95)

n

We now multiply both sides of this equation by x* integrate over

the coordinate space of and r^. Using the relation

//
X*grad,x»<^T„ciT6 = 0,

we obtain

f f
^*^rX,ndr„dr,-

“^2
8
^®’’^'*'^”*^*'^'

f f
Xngra^irXmdr^dTi,.

These equations replace equations (48), which were obtained by ex-

panding in a series of unperturbed stationary state wave functions. To

obtain approximate solutions we use methods exactly similar to those

used in § 5.

Neglecting non-diagonal matrix-elements, except those referring to

the initial state, w^e obtain

JJ
xt^rXodr.d^^F, = 0,

V2j;+ [E-E„+-nJr)}+
JJ

x: V? x„ dr^dr.y^

= -Fo
JJ

xil‘V^XodradTg,-2gmdE„.JJ xJ grad^Xodr^dTj,. (96)

These inhomogeneous equations may be solved in the same way as the

equations (51.1), (51.2).

In order to compare these equations with those obtained by the

method of expansion in unperturbed stationary state wave functions,

we will use as the functions Xn those obtained from (94) by a first-order

perturbation calculation, treating V as small. To this approximation

we obtain by the usual methodf

Xn = l('n+ X Zin’/'ml(Fn—F„)
m¥=n 2V V

m^n ^ ^

t Cf. Soramerfeld, Wave Mechanics, p. 144.
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where = JJ
F(r, r„, r6X(r„, r^) dr^,.

We thus obtain from (96)

+]^{E-E^-VUr)n 2
^ m#n' »» 1 J

_ p\ '^%n. V K»nVr^Fo^

— 2grad,Fo-
fgrad^Ti, 2 -Eojr

(97)

If we neglect on the right-hand side of (97) matrix elements involving

states other than 0 and n, we obtain the equation

SttW
A*

{E-En -V*nn(OR

= -F,VWoJ{E,-Eo)-2g,Bd J*; .grad VJ[E,-E,).

Solving this equation by the same method as that used in § 3.1 and

using the differential equation for we obtain, for the differential

cross-section corresponding to the excitation, the formula

mdco
477^2

ffl-
8,rWFoo-F„„\

J

1

A* k^-kl

)

We see that, apart from the term ^^is formula

reduces to that obtained from the method of distorted waves. Exact

equivalence of the two formulae would not be expected owing to the

different initial assumptions. Provided F{r, r„, r^) is small, the formula

reduces to Born’s approximation for high velocities of impact, but this

is not so when the interaction is large. Under the latter conditions

the method described in this section is only valid when the relative

velocity of the impact is small compared with that of the internal

motions concerned.

However, if it is possible to obtain the perturbed stationary state

wave functions with a reasonable degree of accuracy, the calculation

of the scattered amplitudes by the method of this section should lead

to results of greater accuracy than the previous methods, the inter-

action of the higher states being automatically included to some extent

in the initial approximations. It is best suited to the discussion ofioniza-

tion and excitation of atoms by heavy particles such as positive ions or
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mesons when the velocity of relative motion is less than the orbital

velocity of the atomic electrons concerned. Owing, however, to the

comparative difficulty of obtaining accurate perturbed functions, the

method has not yet been applied extensively. The applications which

have been made are discussed in Chap. XII, § 3.4.

8. The method of the collision complex

The general scattering problem involves the solution of the infinite

set of simultaneous equations (50)

{'7^+kl)F„(r) =^(2 + jYnmFn. (n = 0,1.2,...), (98)

subject to the boundary conditions

F^lr) ~ F^(r) ~ ^)e<*=-''. (99)

Various approximations have been discussed which depend on the

smallness of aU but a very hmited number of terms on the right-hand

side. We now consider what can be done when many of the interactions

Vum are large.

For the sake of argument we consider the impact of a single particle

with some system comprising several particles. This system will be

referred to occasionally as the struck nucleus since the method is

especially important for nuclear phenomena (see Chap. XIII). If many
of the quantities are large for r < JS, it follows that, when the

incident particle approaches to within a distance i?, the energy becomes

rapidly distributed among a great number of other modes of motion.

This interchange will continue until sufficient energy concentrates in

one mode which corresponds to escape of one or more particles from

the system. In other words, when the incident particle penetrates

within a distance R there is a high probability of it forming with the

particles of the struck system an excited complex of considerable

lifetime.

Corresponding to the fact that no emission of particles can take place

imtil sufficient energy concentrates in the appropriate mode of motion,

the complex can be regarded as similar to a stable molecule or atomic

nucleus except for motion in a limited number of modes—^it can be

described by a linear combination of wave functions most of the impor-

tant members of which are of closed form. Thus the equations (98) are

derived by expanding the wave function T, describing the collision, in

the form
'I' - (z + /Kw.w. (

100
)
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This expansion includes, in general, terms in which both and are

bound functions, in (98) being negative. When the are large,

such terms in the expansion (100) will play a very important part and

correspond as a whole to the collision complex.

The collision complex will possess a system of energydevels which

will not be quite sharp owing to the finite though slow rate at which it

breaks up. If the width of the levels is smaller than their spacing,

resonance effects are to be expected w^hen the energy of the incident

particle is such that the total energy is equal to a proper energy of the

complex. When the level width is greater than the spacing these effects

will disappear, but the behaviour will not correspond to classical condi-

tions unless the wave-length of the incident particle is also short com-

pared with the effective dimensions R of the complex.

A further interesting feature of collisions in which the formation of a

complex occurs is that the chance of emission of the surplus energy as

radiation may be quite high. Under the circumstances we have pre-

viously assumed that the collision is over in such a short time that the

chance of radiation during it is very small. Formation of a collision

complex may hold the particles together for such a considerable time that

they have a large chance of radiating energy. This chance may indeed

become greater than that of re-emission of a particle (see Chap. XIII,

§ 2 .22 ).

In nuclear collision phenomena all these effects occur.| Pronounced

resonance is observed in the collisions of slow neutrons with nuclei,

whereas in the case of fission of heavy nuclei by fast neutrons we have

practically classical conditions. Chemical reactions between molecules,

during which no electronic transitions occur, also provide examples

which follow classical mechanics very closely. The concept of the colli-

sion complex has proved very fruitful in dealing with all these pheno-

mena.

8.1. The one-level formula

We now derive, by a method due to Bethe,J the so-called one-level

formula for collisions of a particle with a system of particles under

conditions which lead to formation of a complex. The method is far

from rigorous and relies to some extent on intuition, but has the

advantage of following a procedure similar, in general, to that adopted

in earlier sections of this chapter.

t The necessity for regarding nuclear collisions in terms of the collision complex was
first pointed out by Bohr, Nature, 137 (1936), 344 .

t Rev. Mod. Phya. 9 ( 1937 ), 101 .
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For simplicity we investigate the cross-section for a rearrangement

collision in which a particle 1 is incident on a system A whose internal

coordinates are denoted by r^, and a rearrangement occurs in which

particle 1 is captured and a second particle 2 is emitted, leaving a

system B whose internal coordinates are denoted by We shall

suppose further that neither the initial nor the final nucleus possesses

angular momentum and that neither particle has any spin.

The Schrbdinger equation for the system may be written either in

the form

{3^-EyV = Vf+/?„(r„)+F,(ri,rJ-^jT = 0, (101)

where //„ is the Hamiltonian for the internal motion of system A,

V[v-^,Ta) is the interaction energy, the relative coordinates, and

the reduced mass of particle 1 and system A, or

^ |^_^^V|+F,(r,)+F,(r2,r,)-J^]'F = 0, (102)

in terms of the internal coordinates of system B and the relative

coordinates Fg of particle 2 and system B, Following the same procedure

as in § 4.1, generalized to this case as in § 4.2, we have, without approxi-

mation,

(Vf+A:f)F’(r,) =^ J
^*(r„)Fi{r„ r„)T dr,, (103)

(Vi+*i)G(r,) = J
^=^(r,)F,(r„r,)TdT„ (104)

tfj, <f>
being the respective wave functions for the initial state of system A

and the final state of system B and

ki
SttWi

A2
{E-E,), kl = (E-E,). (106)

To proceed further it is necessary to introduce some approximation

for T on the right-hand side of (103) and (104). Previously we have

taken ^ _ f'(r,)^(r„)+G'(r,)^(r,), (106)

but it is now essential to introduce a term representing the collision

complex.

We suppose that there exists one non-degenerate energy-level of

the complex much closer to E than any of the others. The total angular

momentum quantum number associated with this level we shall take

to be Z. If the polar axis is taken along the direction of the incident
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particles, the ^-component of the angular momentum must be zero. If

Xci^a^ is the wave function of the complex in this state, we now write

Y = i^(r,)^(r„)+G{r2),i(r,)+cx.(r„,ri), (107)

ignoring the effect of the other states of the complex, c is a constant

to be determined.

Substitution in (103) and (104) gives

= cUUr^)P,icos^,)+ ^^lf^
J

\r{ra)V^<f>in)Gir,)dT„, (108)

(Vl+kl-U,)G{r,)

- cU^{r^)Pi{cos,e^)-\--
^

1

r <f>*{^bW2'P{^aW{ri)dr^, (109)
J

C
F,|^(rJ|==dr„, (110)

i!
00

1* V,\</>{r,)\^dr„ (111)

?7,,(r,)i?(cos0O = ^^Jf
nra)Kxcdr,, (112)

C4e(r,)/?(cos 03 ) =^j (113)

The angular dependence of the integrals (112), (113) follows from the

angular momentum conditions we have assumed. As it is supposed

that transitions take place almost exclusively through the complex,

and not directly, we may ignore the last integrals in each of (108) and

(109). To be consistent we must also suppose the function which

produces direct elastic scattering, to be small within the boundary of

the collision complex. The same will apply to

The solutions of (108) and (109) satisfying the boundary conditions

may now be obtained by the method described in Chap. VI, § 3. We
find

F{t) = 2 i*(25+ l)e^’J*/g(r)Pg(cos d)—k^ cUy,{iflr)-{-hi{r)}Plcos d), ( 1 14)
8

where fg[r) is the solution of

L±(r^m+ ir^dr\ dr)^\
kl-U,.

«(s+l)

which is bounded at the origin and has the asymptotic form

(
116

)
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00

Uy, is given by Uy. =
J UJr)fi{r)r^ dr; (117)
0

and the function hi{r) by

J U,Jir'^dr'+fi{r)
/
U,J,r'^dr\ (118)

r 0

where /J is the second solution of (115) which has the asymptotic form

fi ~ {kj^r)-^co&{k^r—il7T+7)j).

It will be noted that as r -> oo, hj{r) f\{r).

In the expression (114) for J'(r) the first series represents the incident

plane wave plus the wave scattered by the potential the second

series the contribution by re-emission from the collision complex. The

differential cross-section for elastic scattering is then

m
In the same way we find

G{t) = •--*2CU2,{ift(r)-fj^(r)}P;(cos^),

(119)

(
120

)

where the symbols follow the corresponding definitions to those for -P(r).

In this case there is no incident wave. The differential cross-section for

the rearrangement collision is

==
W, (121)

It thus remains to determine c, which we choose so that

//
drdr, = 0, (122)

with the approximation (107) substituted for T.f

(^-E)x,:^{E,-E)xc,

/ xt{^-E)cx, drdr, ~ c(E-E). (123)

For the contribution from Fi// we have from (108)

(jr-^)^^== j-^^(Vf+*f)+K(rl,^J}J’,A.

=-g^{c^7lc^?(co80l)^^.+C^li?’.^}+F^^’f (124)

t See note on p. 178.

S&06.67 ^
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As explained earlier, is to be neglected within the boundary of the

complex so that its overlap with Xe neghgible. This leaves

J
x'^{^-E)F^dTdT^

=
J

xtU,,P^OOBe,)i,drdr,+
J

x^V, drdr,. (126)

We consider first the second integral. In view of (112) we have

f 0 dr„ = UUr,)F,(cos 0). (126)

Substituting now, from (114), for F we find

J
X^V^F^drdr, = 47r[i¥Mc-^ic{^*+ «,}],

(127)

where Sj, arising from in (118), is real. Returning to the first integral

in (126) we shall be content with noting that it is also real and may be

included in

A similar discussion gives

STrWg

J
x?V,0^dTdr, = + (128)

where is real.

Collecting the terms for substitution in (123) we have

with p _ I

^2 N2cI^
(129)

Ec is written in place of E^ to allow for the additional real terms involv-

ing c which appear in (127) and (128).

We now have for the cross-section for the rearrangement coUision

«d = g(2?+l)
TiF,

{E-Kr+i(r,+r,)^’
(130)

where r _ l«icl^ r=:M!i!y!
^ nMj_2l+l’ *

1TM22I+I'
(131)

This is the so-called one-level formula, first derived by Breit and

Wigner.f

8.11. Significance of the one-kvd formvla. The formula (130) is of

t Phyt. Rev. 61 (1937), 693.
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t3rpicar resonance form with the total width at half maximum equal to

ri+ rij. It may be compared with the corresponding optical formula for

the breadth of a spectrum line.

Consider the resonance absorption of hght by an atom which raises

it from the ground state ^ to a state B from which it may drop either

to the state A or to one intermediate state C. The line width of the

resonance absorption is then given by where and

are the transition probabilities from the state B to states A and

C respectively. By analogy we may interpret r^/S, as giving the

chance that, in unit time, particle 1 or particle 2 respectively will be

emitted from the collision complex. This is consistent with the formulae

(131), for -Wic are determined by the overlap of the function Xe

representing the complex and the functions Fi(j, 0(f> respectively, as

usual in expressions for transition probabilities.

Adopting this viewpoint we must suppose that

ki
(
2^+ 1

)

ri(r,+r,)

represents the cross-section for formation of the complex, r2/(r3^+r2 )

giving the chance that it will break up by emission of the particle 2.

Fj and r2 are usually referred to as the partial widths for emission of

particles 1 and 2 respectively, since the total width F (= F^+Fg) can

be analysed into separate contributions from the two possible modes

of break-up of the complex.

The small shift of the resonance maximum from to is unimpor-

tant for most applications as the value of E^ is not in general predictable,

and it matters little whether E^, or E’^ is determined from experiment,

8.12. Elastic scattering. We should expect that, for elastic scattering,

the effect of the resonance level of the complex would be to introduce

a cross-section differing from (130) by the replacement in the numerator

of Fg by Fj. Actually the formula for this case is complicated by the

presence of a contribution to the scattered amplitude due to ‘potential’

scattering, arising partly before penetration of the nucleus and partly

from ‘shadow’ diffraction roimd the nucleus (see this chapter, § 1).

The partial elastic cross-section of order I becomes

ca%_ 1

.

(iE;-if)-4i(ra+r,)
(132)

There is some difficulty in providing a precise definition of the phase

7ji which determines the potential scattering. We have defined it in
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terms of the Zth order wave equation for motion in the field of potential

fi^UI2M-y, the interaction of particles 1 with the system A averaged over

the initial wave function of that nucleus. For distances r greater than
the radius R of the collision complex this can be accepted without

objection but, for smaller distances, we must take account of the fact

that the incident particle loses its identity in the formation of the com-
plex. The chance that, on entering the system .4, it is scattered directly

without energy interchange is negligible. It is therefore natural to

expect that, at r == i?, the interaction fiWI2M^ is best represented as

corresponding to an impenetrable sphere of radius R. Thus, in con-

sidering the impact of a particle of charge e with a nucleus of charge

Z2 € we would take, in calculating yj,

2 ^ r
{r > Rh

-><x> [r = R), (133)

Further justification for this viewpoint will be given in § 8.2 below.

f

Unfortunately, in actual cases some ambiguity still remains in the

choice of R,

8.13. Case when the coinplex may break up inmore than two ways. We
have derived the above formulae on the assumption that either one of

only two particles can be emitted from the collision complex. It is an
immediate generalization to give the formula when any one ofn particles

may be emitted. In place of (130) we have, for emission of the pth
particle, a cross-section

^(2^+ 1 )

(134)

with a corresponding modification of (132).

8.14. One-level formula with unrestricted angular momenta. The
appropriate generalization of the one-level formula for the case when
the incident particle has a spin of i quantum units and the struck

system an angular momentum of s units has been given by Bethe and
Placzek.:!; They obtain, in place of (130),

P(2i+i)(2«4-i)(i:-j;;)!i+jr*’

where J is the angular momentum quantum number of the complex.

f Hethe {Rev, Mod, Rhys. 9 (1937), 91) shows that it is only with the assumption of
an effective repulsive potential within the nuclear radius that the contribution from
distant resonance levels is unimportant.

{ Rhys, Rev, 51 (1937), 460.
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8.2. Generalization to many resonance levels of the complex. Partial

widths smaller thin level separation

Before generalizing the formula (134) to take account of the existence

of more than one energy-level of the collision complex we must dis-

tinguish two cases. As the excitation energy of the complex increases

the level separation will decrease (see Chap. XIII, § 2.1), so that

eventually the level width will exceed the level spacing. We first discuss

the case in which the excitation is not too high, so the levels do not

overlap.

Bethe and Placzekf have given as the generalizations of (130) and

(132) for this case

«i=5(2i+l) 2
W-Ic

(136)

rj

[E'er
t

(137)

in which the separate states of the compound system are distinguished

by the index r and = I^^-

These formulae were obtained by an extension of the method used

in deriving the one-level formula. This derivation leaves much to be

desired from the point of view of rigour. The compound state is only

vaguely defined, and the wave function of the relative motion of an

incident or outgoing particle within the complex is described only in

an intuitive way. This leads to difficulty in determining the potential

scattering and the matrix elements which define the partial level widths.

A more rigorous treatment has been given by Kapur and PeierlsJ which

avoids these difficulties.

8.21. Generalization of the one-body dispersion formula. Kapur and

Peierls derived a many-body dispersion formula, which reduces to the

Bethe-Placzek expression (135) when the partial widths are smaller

than the level spacing, by generalizing the one-body formula given in

Chap. TI, § 7.

The first step is to introduce a precise definition of the compound
system. Once again we choose a definite radius R for this system such

that the chance of finding more than one particle of the system at a

distance from the centre greater than R is small.

t Bev. Mod. Phya. 9 (1937), 106.

X Proc. Boy. Soc. A, 166 (1938), 166. See also Wigner, Phys. Bev. 70 (1946), 15;
70 (1946), 606; Wigner and Eisenbud, ibid. 72 (1947), 29; Feshbach, Peaslee, and
Weisskopf, ibid. 71 (1947), 146.
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LetT be, as usual, the wave function for the complete system. Wemay
expand T in the form

(138)

where the coordinates refer to the relative motion of the incident

particle and the centre of mass of the remainder. It is also possible,

just as in § 8.1, to expand T in any one of the alternative ways, such as

= (139)

in which Fg refers to the relative motion of a second particle and the

centre of mass of the remainder. As this particle is not the incident one

the functions must represent outgoing waves only. Since for

the chance of finding two particles outside the system is small, we have

[V^+kl-V,{r,)\G^ = 0 {r^>R), (140)

where includes only long-range interaction between the particle 2

and the residual system. Thus, if the collision is a nuclear one and

the particle is charged, represents the Coulomb interaction. If we
expand in the usual way in a series of spherical harmonics

^ 2 (
141

)

the condition that should represent outgoing waves only requires

= 0 ('•2 = ^). (142)

where is as defined in Chap. II, § T.f

A wave function representing a stationary state of the compound
system, is now defined so that, when expanded in any one of the

alternative forms (138) or (139), the functions 0^, satisfy the appro-

priate condition (142). By the inclusion of the function for the inci-

dent particle the system is made a closed one, just as in the one-body

case of Chap. II, § 7. Corresponding to each function there will be a

complex energy value pjr _ (143)

A procedure very similar to that employed in the one-body case may
then be used to obtain an expansion of the wave function T describing

the collision in terms ofthe functions Xc- This gives for the cross-sections

Q\ and Q\i the formulae

<2'd = ^,(2^+l) (144)

{E,-E-\iT;)N, (
146

)

t Or as in Chap. Ill, § 5.1, if a Coulomb field is present.
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P

K = j
<^'^1 . (

1 46
)

where xJ* differs from xJ in that its expansions satisfy the conditions

instead of (142), and
J

dT^^dT^ — 1. (1^^)

The quantities receive in this treatment a precise significance.

Thus ^2

and differs only in that gi{B) is replaced by gl{R)^ As it may be

shown that \g\\^ ~ \gl\^i it follows that differs from iJbp only by a

phase factor.

In the case of the cross-section for elastic scattering, the phase is

unambiguously determined when R is given. It represents the phase

shift which would arise in the scattering by a potential which is of the

form Up for '> R and presents an infinite barrier at = R,

Comparison of the formulae (144), (145), which may be seen to be

natural generalizations of the one-body formula (64) of Chap. II, with

those (136), (137), given by Bethe and Placzek, reveals a close similarity.

The main difference is in the inclusion of the factors AJ. and the appear-

ance of Wpc in place of further been shown by Kapur and

Peierlsf that, when the spacing of the levels JSy is greater than their

width r,., these differences are unimportant. Apart from providing a

rigorous justification for the use of the formulae (136) and (137) under

these circumstances, the method ofKapur and Peierls has the advantage

of giving definite expressions for the matrix elements w^c ^-nd the

potential scattering, provided the radius R of the compound system

is fixed.

It must be remembered, however, that there remains ambiguity in

the choice of i?, just as in the one-body case. Referring to the expression

(137) for the elastic scattering we can regard it as made up of three

terms—the contribution from the nearest resonance level, that from

the aggregate of all the more distant levels, and that from the potential

scattering. The relative importance of the last two may be changed by
a different choice of R, For convenience the best choice would be the

t Loc. cit.
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one which minimized the contribution from the distant resonance levels.!

As the theory has not so far developed to a stage in which it can be

applied to prediction of cross-sections for particular cases, the practical

problem of evaluating (137) has not yet arisen. It is of interest to note,

however, that BreitJ has been able to introduce a schematic model of

a dispersive reaction which permitted an exact algebraical treatment.

The compound system appeared unambiguously in this analysis without

any introduction of a range R.

8.22. Variation of partial widths with velocity. It will be noted that,

in both the methods of Bethe and Placzek and of Kapur and Peierls,

the energy-levels of the compound system depend on the energy of the

incident particle. When the level width is small compared with the

spacing, the dependence of the real part on this energy may be ignored

as a small effect; but the contributions Pj; from the partial level widths

to the imaginary part ^iF^ depend quite strongly, in general, on the

velocity of ejection of the particle concerned.

According to the formula of Kapur and Peierl8§

Hc\^ (149)

where \wlc\ is given by (148). Confining ourselves in the first instance

to cases in which the potential acting on a particle when outside the

system is zero we have, for particles of zero angular momentum,

rj is, therefore, proportional to the velocity of ejection under these

circumstances.

If the particles have I units of angular momentum and k^R < I, then

(151)

and is proportional to the (2J4-l)th power of the velocity.

These results would be expected also from the treatment given in

§ 8.1. The quantities U2c which occur there are determined mainly

by the overlap ofthe functions/j, gi respectively with the region occupied

by the compound system. For small values of kR the magnitude of the

functions in this region wiU vary as {kRf (see Chap. II, § 3.3), and hence

etc., will vary in the same way. As the corresponding widths are

proportional to k\u\^ they will vary as in agreement with (151).

In view of the marked dependence of the partial width on energy the

true width is often defined as the value at exact resonance.

t See footnote, p. 164.

§ Loc. cit.

t Phys, Rev, 69 (1946), 472.
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If we now consider the effect of introducing a finite interaction U for

r > By the velocity variation ofthe partial widths becomes more compli-

cated. The most important case in practice arises in nuclear collisions

where U represents the Coulomb repulsion. The partial widths then

contain the additional factor which gives the chance that the

particle wiU penetrate the Coulomb potential barrier at the nuclear

surface.!

A more detailed discussion ofthe application ofthe dispersion formula

to nuclear collisions for the case of separated levels will be given in

Chap. XIII, § 2.2. In § 8.31 below some further results of a statistical

character concerning the energy variation of the widths will be given.

8.3. The case of overlapping levelsX

We now consider what can be done when the excitation energy of the

complex is so high that the level widths are greater than the level

separation and there is no longer a discrete spectrum. The formula (144)

remains valid but is not in a suitable form for practical application.

More convenient expressions may be obtained by statistical methods.

Furthermore, when the wave-length of the particles emitted is also

short compared with the dimensions of the complex a completely

classical description is possible.

The one-level formula (134) expresses the fact that the ratio of the

cross-sections Q\y Q\, etc., for different rearrangements involving, respec-

tively, emission of particles 2, 3, etc., is independent of the way the

compound system is formed, viz.

Q\IQ\ “ A/Ia* (^^^)

According to it the total cross-section for all t3rpes of coUision of par-

ticles 1 with the initial system, integrated over a range of energies

including the resonance level, is given by

\ (153)

provided the potential scattering is ignored. The average total cross-

section for an energy interval containing many levels will therefore be

$tot=^(2?+l)r,/A (154)

t See Chap. Ill, § 6.

t The discussion in this section follows closely that given by Bohr, Peierls, and Placzek,
Nature, 144 (1939), 200, and other references to discussion of statistical applications
include Bethe, JRev, Mod, Phya, 9 (1937), 96; Weisskopf, Phys. Rev, 52 (1937), 295.
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where D is the mean energy separation of the levels in the interval

concerned.

On the basis of these results we might expect, for the case of over-

lapping levels, that (154) would give the cross-section for formation of

the complex and that (152) would then determine the chance that it

would break up in any particular way. Thus we would have for the

cross-section for a rearrangement in which particle 2 is emitted

= (
156

)

where F — .

We shall now show that a formula of this type may indeed be used,

provided there is some reinterpretation of the significance of the quanti-

ties Fj, F2 ,..., etc.

The first point is that in this case of overlapping levels the state of

the complex is not defined by its energy alone. The wave function

representing the complex will be a linear combination of functions for

the separate levels which overlap at the particular energy concerned,

and the coefficients in this combination will depend on the way the

complex was formed. However, (155) may still be retained if Fg, F3 ,...,

etc., are associated with a definite mode of forming the complex, so that

Q2IQZ = (
166

)

the index 1 indicating that the complex has been formed by capture

of the particles 1 .

To derive the appropriate form of (154) we may apply the principle

of detailed balancing to the reaction;

Particle l-|-system N in normal state ^ Complex,

in which the total energy lies between E and E+dE, supposed to be

taking place within a volume V. Then, if pj, pi are the respective

probabilities of formation and disintegration of the complex per second,

9cPI = 9N9iPlt (167)

where g^, g^ are the statistical weights of the particle 1, system iV,

and complex c in the states concerned.

In the cases already considered, in which the particle 1 and system N
have no spin and the total angular momentum quantum number of the

complex is Z,

= gc = (2l+l)Z, (168)

t Fowler, Statistical Mechanics, 2nd edition, Cambridge (1936), p. 677.
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where Z is the number of levels of the complex with suitable angular

momentum and parity, lying in the interval E to E-\-dE, and k is the

wave number of the relative motion of particle 1 and the system E

,

In terms of our previous notation

(
159

)

where v is the relative velocity of the particles 1 and systems iV*. FJ is

now the width of the compound state due to emission of particles 1,

averaged over a statistical ensemble of complexes formed in all possible

ways. We now have, since

dE
dk

fiv.

Qlt = ^i2l+l)nZ/dE

= ^(2^+i)r?/i). (160)

For practical purposes the modifications involved in (156) and (160)

are usually unimportant.

8.31. Statistical formula for level vndihs. The sticking probability.

The formula (160) may be used to obtain information about the order

of magnitude of level widths considered as statistical average values.

The maximum value which can have is 7r(2if+l)/^^, so we may
write

Qiot = p(2^+l)^„ (161)

where is < 1. This gives

2(2Z+l)r? = ^2(2^+l)^^t (162)

Those emitted particles 1 which have an angular momentum such that

I > kR wiU contribute a neghgible amount to the sum. Hence when kB

2 (2^4- l)r? = \Dk^R% ( 163)

a mean value for is such that the cross-section for complex forma-

tion is Since ttR^ is the geometrical cross-section, t, is usually

called the ‘sticking’ probability. Introducing a mean value for FJ also,

r; = Dll2m. (164)

The behaviour of the sticking probability as a function of energy has

t The level spacing D is now taken to be an average over all important angular
momenta of the complex.
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been investigated by Bethe.f In forming a complex the incident particle

loses its identity and may be regarded as absorbed. As shown in Chap. I,

§ 7, absorption may be represented by the addition of a negative imagi-

nary term to the potential energy. Bethe therefore discussed the motion

of a particle under the action of a potential V[r)—icr[r), where a{r)

represents an absorption potential. He found, as would be expected,

that the sticking probability I tends to unity as the energy of the par-

ticle increases. On the other hand, the level separation decreases with

the degree of excitation of the complex. J It follows from (164) that

the level width, and hence the disintegration probability associated

with emission of a particle of particular energy, eventually decreases

as the energy increases beyond a certain value. In particular the chance

that an incident particle will be re-emitted with its initial energy

(elastic scattering) becomes very small at high energies of impact, as

might be expected.

The total cross-section for a collision in which a particle 1, of high

energy, is captured and particle 2 emitted, may now be written,

0

- 7ri?2r<iVr. (165)

This simple result expresses the fact that Q\ is, in this case, equal to

the geometrical cross-section of the system times the chance that the

complex will decay by emission of the particular particle 2.

8.32. Energy distribution of the emitted particles. A highly excited

complex may decay in stages by emitting a series of particles of con-

siderably smaller energy than that of the Incident one. The relative

probability of emission of a particle leaving the complex in a particular

energy state n is given by
TjKn) == 2(n)/2’^', ( 1 66)

where D is the mean level distance in the excited complex and ^aCn) is

the sticking probability which would be associated with an impact of

the particle 2, possessing the same energy E as that with which it is

emitted, with the residual system in state n. The chance p4,^) of

emitting a particle 2 with energy between E and E+dE will be propor-

tional to r2(^) and to the number p{E) dE of energy states of the final

system which lie within a range dE about the state n. Thus

pWiiny (
167

)

t See Chap. XIII, § 2.1.t Phya. Rev. 57 (1940), 1125.
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The density of energy-levels of the residual system increases rapidly

with its degree of excitation, i.e. with decrease of E, On the other hand,

^2(n) fo'Us off rather slowly as E decreases.

The resulting distribution is therefore of

the form shown in Fig. 20, with a maxi-

mum at a relatively low energy.

8.4. The transition state method

We discuss now a statistical method,

first introduced by Pelzer and Wigner,t

which may be employed in deahng with

rearrangement reactions in which the con-

ditions are entirely classical. It is particu-

larly suited for the discussion of the rates

of chemical reactions, but it may also be

applied to nuclear phenomena, such as fission or fast neutron reactions,

for which classical mechanics is valid.

A detailed picture of the course of the collision is then possible in

principle and the transition state method makes use of this. Essentially

it provides formulae for the statistical averages of the partial widths I],

of the different possible reactions. For chemical phenomena it is con-

venient to consider a macrocanonical ensemble of reactants as the

observed reaction rates refer to such conditions. In nuclear applications

a microcanonical ensemble is more appropriate.

We consider a reaction involving n ‘particles’. They may be nucleons

or atoms (it must be assumed in applying the method to atoms that,

during the reaction, no electronic transitions take place). This system

may be specified by Zn coordinates. Of these, three determine the

position of the centre of mass and three the orientation of the whole,

leaving 6 to describe the internal configuration. We may therefore

think of a hypersurface representing the potential energy as a function

of these Zn— 6 coordinates. This surface will include regions or basins

of relatively low potential energy, separated by mountain ranges. These

low-level basins correspond to separated reactants. In order to pass

from one such basin to another, i.e. for a rearrangement to occur, the

representative point must pass over the mountain range. To do this it

will, in general, pass at the lowest point in the range. At this point the

t Z. phyaik. Chem, B, 16 (1932), 446. For detailed discussion of the method see

Wigner, Tnma. Far, Soc. 34 (1938), 29; Glasstone, Laidler, and Eyring, The Theory of
Rate ProoesBeet McGraw-Hill, New York (1944), Chaps. I, III, and IV.

Fig. 20. Illustrating the energy

distribution of particles emitted

from a highly excited complex.
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potential energy will be a maximum for changes involving passage

across the range, but will be a minimum for changes in perpendicular

directions; in other words, the point is a col or saddle point in the

surface. When the configuration of reactants is represented by this

point, which is called the activation point, and is in such a state of

motion as to pass from the initial low-level region across the range, it

is said to be in the transition state, and to form an activated complex.

In most cases this represents an oversimplified picture. The passage

from one low-level basin to the other may proceed through one or more
high-level basins of comphcated shape. Thus the representative point

may enter such a basin through a narrow pass and may leave through
a second such pass. In between it may execute a complicated series of

motions depending on the shape of the basin. As a result of these it

may be much more likely to return through the pass of entry than to

proceed out through the other into the second low-level basin. The
state of affairs is here rather like that in the collision complex already

considered. Owdng to the complicated shape of the high-level basin the
system spends a long time there before sufficient energy concentrates

on a mode of motion which takes the representative point out of the
basin through one or other exit.

We now suppose the original reactants, and also those in the transition

state, to be in statistical equilibrium at temperature T

,

It is usually

unnecessary to consider reactions of higher order than the second, so we
consider a reaction such as

A+B->AB*->C+D,

AB*^ represents the transition state. It may be considered as an ordinary
molecule produced by association of the atoms A and B except that
motion in one of the 3n— 6 coordinates specifying it will lead to decom-
position. Applying then the usual statistical theory, the equilibrium
concentration of activated complexes is given by|

fUT)
fA{T)fB(Ty

(168)

where N^, N^, f^, fs are the respective concentrations and partition

functions of the systems A and B.

is the partition function of the transition state, and it may be
written as follows. We suppose the coordinates chosen so that motion
across the pass involves change in one coordinate g* with corresponding

t Fowler, Statistical Mechanics, 2nd edition, Cambridge (1936), p. 160.
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momentum In phase space the representative point must lie in

the range h~'^ dp*dq*, the other coordinates and momenta having any

values consistent with these. It will normally be a good approximation

to treat the motion in as a pure translation and to factorize

in the form ^-E*ikT dp^dq'^jhy (169)

where the first factor represents the contribution from all coordinates

but q*, the others that from g'*. is the energy in this coordinate

and is > E^, the height of the pass.

The rate at which representative points cross the pass per second is

given hyNj^f^v*ldq*y where v*, its velocity along the reaction coordinate

g*, is given by p*/m*, being the effective mass for this motion.

Hence the total number of crossings per second in a volume V is

f, y m 00

/
--E*lkTP*

Writing E* — EQ+p*^/2m*, this givesm
m*h

-EulkT

(170)

(171)

It is important to realize that (171) is not necessarily the rate of

reaction. Thus, in the case in which a high-level basin exists, (171) merely

gives the rate of entry to this basin. To obtain the rate of reaction we
must multiply by a factor /c, usually called the transmission coefficient,

which gives the chance that, once the representative point enters the

high-level basin, it will escape by the pass leading to the particular

resultants concerned, i.e. to C-\-D. In terms of the nomenclature of the

preceding sections, the representative point in the high-level basin

corresponds to the collision complex, the formula (171) is related to the

sticking probability, and the transmission coefficient to the ratio F^j^/r

which gives the chance that the complex will dissociate in a particular

way. However, the applicability ofthe transition state method does not

depend on the existence of an intermediate quasi-stationary state of

relatively long life time.

To relate the formula (171) to the more usual one involving a collision

cross-section, we first note that, ifQ is the cross-section for the rearrange-

ment, averaged over the energy distribution, and EJkT is small, then

the rate of reaction is given by

(
172

)
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where m is the reduced mass. Hence

iTTinkTW nT)
'

\ } UT)UT) '
'

In the simple case of a reaction between atoms A and B of masses

m2 respectively, then

UT) = {2nm, kTYIh\ MT) = {2^m, kTfjh^

f*{T) == {27T{m^+m^)kTY{S7rmT/h% (174)

where /, the moment of inertia of the activated complex about its

central axis, is given by

I =
^1+7W-2

di2 being the distance apart of the atoms in the activated state. We
have then q _ (

176
)

We now illustrate the use of the method for discussing the behaviour

of a microcanonical ensemble of systems with excitation energy between

E and E-\-dE.1i These systems may be atomic nuclei or activated

molecules which, when left to themselves, will break up with release

of the excess energy. If the number of systems in the ensemble is chosen

to be equal to the number p{E) dE of levels in the range E to E-\-dE,

the number which break up per second will be p[E) dEF^jh, Fy having

the same significance as in § 8.3. (159).

With the same notation as above, the number of levels in a distance

dq*, measured along the reaction coordinate in the transition state,

will be p*(E-E*) dEdp*dq*lh. (176)

In the initial state there is one system in each of these levels, so the

number which break up per second is

S'’*!'®-'®*)?-

Writing, as in (171), E* = Eo-j-p*^j2m*, this becomes

^ j
p*{E-E,-E,)dE,

The integral is equal to the number N* of levels in the transition state

available with the given excitation. We therefore have

p{E) dETflh = dEN*lh,

Tf = N*j{2mp{E)} (179)

= DN*I27i.

t Bohr aad Wheeler, Phys. Rev, 56 (1939), 426.
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where D is the level separation in the excited system. An application

of this result to the discussion of nuclear fissionf will be made in

Chap. XIII, § 6.3.

9. Summary of methods

A convenient way of summarizing the methods available for the

discussion of inelastic collision probabilities is by means of the following

table.
TABLE I

Conditions defining collision

Magnitude of matrix elements

of the interaction energy

Relative velocity

Diagonal
elements

I

Non-diagonal

elements

(^)
Method
available Examples

Great compared
with that of inter-

nal motions.

Less than or com-
parablewith thatof

internal motions.

Any mag-
nitude.

Small.

Any magnitude.

Small.

Bom’s approxi-

mation.

Bom’s approxi-

mation.

Collision of fast

electrons with

atoms.

Large. Small. Method of dis-

torted waves.

Excitation of

molecular vi-

bration by im-

pact of atoms.

V» Any mag-
nitude.

All small except

where 0th

and nth states

are in approxi-

materesonance

.

Solution of

simultaneous

equations.

Transfer of elec-

tronic excita-

tion or charge.

f > 77 Comparab]
but rates

throughoi

le and not small,

of change small

it

Method of per-

turbed sta-

tionary state

wavefunctions.

Excitation and
ionization by
slow positive

ions.

Many large and with large

rates of change.
Method ofcolh-

sion complex.
Nuclear colli-

sions.

10. Collisions between two systems, one of which is initially at

rest

In several sections of this book (Chap. V, § 3; Chap. VIII, §§ 2, 3, 4;

Chap. XV, § 3) we have found the differential cross-section, 1(0) dwy

Sft96.67

t Ibid.

N
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for collisions between two particles in which their centre of gravity is

at rest. This is found by solving the equation

= 0 ,

where m is the ‘reduced mass’, of the two particles,

and V their relative velocity. If a solution is found of the form

ijj

then I{6) = |/{^)|^. We show in this section how to find the differential

cross-section when one particle, Wj, is initially at rest. Denoting by

J(0) dQ the differential cross-section in this case for scattering through

an angle 0 into the solid angle dil, we have

J{0)sin0 = l{d)smd dd/dB,

where tan0 = mi 8in 0/(miCos 0-fm2).

In the special case where the masses are equal, 0 = Id, and hence

(unless the two particles are similar, cf. Chap. V, eq. (26))

J(0) = 7(20)4 COS0.

Footnote to page 161

This may be justified as follows. Suppose that the orthonormal set of functions

are solutions of the equation

(H'-E„)xn = 0,

in which the Hamiltonian H' differs from by a small term Hj. Substituting

in the equation JS7)T* = 0,

we find 2 o„(£„- JS)x„ = Hi T.

Multiplying by xi a^^d integrating, this gives now

o„ = /
x:Ht'¥drdrJ(E„-E).

Formally this is equivalent to the condition

which is the more convenient form to use when an approximate form is taken for

T and Hi is unknown.



IX

THE COLLISIONS OF FAST ELECTRONS WITH ATOMS.
ELASTIC SCATTERING—BORN’S APPROXIMATION

1. Introductory. The experimental methods and results!

In this chapter, and in Chapters X, XI, XII, and XIII, we apply the

general theory of Chapter VIII to the detailed investigation of particular

problems. Of these the most important are those associated with the

collisions of electrons with atoms. The results of the calculations are

expressed in terms of the differential and total cross-sections corre-

sponding to colhsions in which the nth state of the atom is excited by

electrons of definite velocity v. These will be denoted by 7^(0) and

respectively,! and are such that

rr

277
j
i^{e)sme de = Q^. (i)

0

For the case of the excitation of continuous energy-levels, a level is

defined by a quantity k such that the energy corresponding to the level

is given by E, ^ K^h^l^Trhn. (2)

The cross-section corresponding to excitation of a set of levels between

K and /c-(-d/c is then denoted by (Ik.

The differential cross-section determines the angular distribution of

the scattered electrons, whereas the total cross-section determines the

total probability of excitation of the given state.

As it is of importance to keep the theory in close relation to the

practical side of the subject, we will first outhne the different types of

experimental investigation concerned with the collisions of electrons

with atoms, and indicate the relations of the observed quantities to

the calculated differential and total cross-sections. The types of experi-

ment may be classified as follows:

1.1. Experiments in which the aggregate of effects due to all types of

collision, elastic and inelastic, are observed

The results of these experiments give information only about the

Q^b, not the differential cross-sections, and do not usually distinguish

t For a detailed account see Massey and Burhop, Electronic and Ionic Impact Pheno^
mena. Chaps. I and II.

t Cf. Chap. II, § 1.
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between the Q's corresponding to different states. The two types of

experiment falling under this head are as follows:

(a) Measurements of the stopping-power of matter for fast electrons.

Here the experimental methods consist in the investigation of the ranges

of fast particles in different materials. The stopping-power is defined

in terms of the loss of kinetic energy of the electron per cm. of path in

the material. Denoting the energies of the bound atomic states by

we see that this rate of loss of kinetic energy is given by

=
^{| J (E.-Eo)Q. ^^4

(

3
)

where Eq is the energy of the normal state of the atom, and is given

by (2). N is the number of atoms per c.c. of the material, and is

related by formula (2) to the maximum energy which the electron can

give to the atom.

In certain cases the methods used may be apphed to obtain informa-

tion about individual collisions; the calculation of the stopping-power

in terms of this summation is, however, of importance, in view of the

application of range measurements to determinations of the initial

energy of the particle,t

(d) Measurement of total cross-sections. If a homogeneous beam of

electrons is fired through a gas, the beam becomes diffuse, and, if its

initial energy is greater than the resonance potential of the gas, it will

also become inhomogeneous.

Let J be the intensity of the electron beam. Then, ifwe regard every

electron which is deviated or loses energy on collision as lost from the

beam, the loss of intensity |8«/| in traversing a distance 8x in the gas

at pressure p may be written in the form

SJ — —Japhx,

where a depends only on the nature of the gas and the energy of the

electron beam. Integrating this equation, we obtain for the intensity

in the beam after traversing a distance x cm.,

J ==: J^er^vx^

By measuring the variation of the beam current with length of path

in the gas the quantity a may be measured. This t3rpe of experiment

was introduced by RamsauerJ and has been applied by him and by

t See, for example, Blackett aad Ocohialini, Proc. Roy. 8oc. A, 139 (1933), 699.

J Ann. der Ph/yaik, 64 (1921), 513.
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various other investigators to the measurement of a for all simple gases

and some metallic and other vapours.!

From the definition of the cross-section Q it is clear that, ifN is the

number of atoms per c.c. in the gas at normal temperature and pressure,

where p' is the unit of pressure (actually 1 mm. Hg) in the units (mm.

of mercury) adopted in the experimental determinations. If the cross-

sections dK are measured in units of 7ra§, where is the radius

of the first Bohr orbit in hydrogen, we have, for this pressure

3-15

The application of this method, unlike that of the stopping-power

investigations, is restricted to electrons of slow to medium velocities^

(0*5 to 400 volts), and it is seen from the above that it gives only the

magnitude of the sums of all cross-sections. For electrons with energies

below the resonance potential of the gas, however, only the elastic

cross-section will be effective; and so in this range of energies the

method gives results of especial significance.

It is of interest to point out here that the experimental definition of

a given above would be meaningless on the classical theory unless the

colliding systems had definite boundaries, and the observed values

would depend on the actual definition of a collision provided by the

dimensions of the receiving slits of the apparatus. This diflSculty does

not occur on the quantum theory, as the cross-sections Q are definite,

provided that the field of force of the scatterer falls off sufficiently

rapidly with distance, a condition satisfied by all atomic fields. This

point is discussed in Chapter II, end of § 1, and experimental evidence

in its favour is described in Chap. X, § 1.

In connexion with this type of experiment we must also mention the

method due to Townsend.§ The interpretation of the initial observa-

tions in this method requires the use of a complicated classical theory

of the motion of electrons in gases, and its application is naturally

t See, for example, the summaries by KoUath, Phys, Zeits, 31 (1931), 985; Erode,
Rev. Mod, Phya, 5 (1933), 258, and Massey and Burhop, Electronic and Ionic Impact
Phenomena

f

Chap. I.

t Erode, Phya, Rev, 39 (1932), 547, has measured a for argon for electrons of energy
up to 2,500 volts by a modification of the usual method.

§ Phil. Mag. 42 (1921), 873.
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limited to conditions under which the theory holds, viz. at very low

velocities of impact (below 5 volts in most gases). Inasmuch as this

method gives information as to the form of for much lower electron

velocities than the method of Ramsauer, the results obtained by its use

are of considerable importance.

1 .2. Experiments in which the differeyit types of collision, elastic and

inelastic, are investigated separately

From the results of these investigations information is obtained about

the relative magnitudes of the different cross-sections for a given inci-

dent velocity, and about the differential cross-sections IJ(B) as functions

of angle of scattering, and also about the variation of any one cross-

section with velocity of impact. Absolute magnitudes are not usually

measured, but these may be obtained from experiments of the first t3^e.

For convenience of description these methods may be further divided

into three classes:

{a) Electrical methods. In experiments of this type direct measure-

ments are made of the angular distributions of scattered electrons or

of the relative excitation probabilities, by observing the scattered cur-

rents. For the case of ionizing impacts, the absolute ionization cross-

Ktomx

section
J

dK may be measured by observing the positive ion current
0

produced by a homogeneous beam of electrons fired through a gas at

low pressure.

(6) Optical methods. In this type of experiment a homogeneous elec-

tron beam is fired through a gas or vapour, and the intensity of the

light of different wave-lengths emitted by atoms excited by the electron

beam is measured. The intensity of Hght emitted, corresponding to

a switch from a state to a state m of a gas atom, will be proportional to

where is the optical transition probability from state n to state m.

The variation in the intensity of the light of a given wave-length with

the velocity of the exciting electrons will then give the variation of

with the velocity of impact, as is independent of the method of

excitation. If can be calculated, it is also possible to compare the

magnitudes of the cross-sections for different n.

This method has the advantage of being more sensitive than the

electrical method; and thus the behaviour of the cross-sections may
be examined for quite high excited states.
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We thus see that the experimental material available is sufficiently

diverse to provide ample illustration of the theory and to test its

vahdity. Conversely, the theory is in a position to throw Hght on a

large variety of phenomena of interest and importance to the physicist.

Before proceeding to the detailed calculations of differential and total

cross-sections we will consider briefly the order of treatment. We con-

sider first elastic colhsions, using the simplest formula, the first approxi-

mation of Born’s theory, Chap. VII, § 1. The range of validity of this

formula is examined and the theory then improved ( Chap. X) by using

the method ofFaxen and Holtsmark given in Chapter II. We then intro-

duce further improvements in certain cases, including a consideration of

electron exchange. Up to this point the calculations require no mention

of inelastic collisions, but in a more accurate theory one cannot discuss

elastic conditions without discussing the inelastic at the same time, and

the effect of the interaction of the inelastically scattered waves on the

elastic is next briefly discussed. This, then, provides a convenient point

(Chap. XI) for the detailed discussion of inelastic collisions. Just as for

the elastic collisions, we begin with Born’s first approximation (which

is sufficient for the calculation of the stopping-power of matter for fast

particles) and then consider the improvements necessary for slower

particles.

2. Elastic scattering. Born’s first approximation

It was shown in Chap. VII, § 1, that the differential elastic cross-section

I{d) for an elastic collision of an electron of velocity v with a spherically

symmetrical field of force of potential V{r) is given within the range of

validity of Born’s first approximation byf
oo 2

^(^) = J
^^^V{r)r^ dr {K ~ iTTmv^m\6jh), (4)

0

A second formula showing the relation between (4) and the formula for

the scattering of X-rays was also obtained.^ We have now to calculate

1(6) when V(r) is the field of an atom.

If ^(ri,r2,.-.,r^) is the wave function of the atom (atomic number

Z), we have§

V{r) = -e*
J
(:?- 2 j^.^y-i)l^o(ri.-)P

dri...drz. (6)

As the wave function is only known analytically for a very few

t Cf. Chap. VII, eq. (12). t Chap. VII, eq. (8). § Cf. Chap. VIII, §§ 2, 3.
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atoms, the calculation of V{r) for most atoms depends on the applica-

tion of numerical methods; we will first consider the cases where

known analytically.

3. Scattering by hydrogen and helium

For hydrogen we have

^0 == (
6

)

For helium we may take with sufficient approximation the wave func-

tion obtained by Hylleraasf using a variation method, viz.

{Z = 1-69). (7)

Substituting these expressions in (6) and integrating, we find

= -^*b+;r)
g~2r/ao for hydrogen,

^0/

= — 2€^ 4-^j

er^zria^ for helium. ( 8)

TABLE I

Scattered Intensities for Helium and Hydrogen

^sinje V(Volts) .

8mi«
{2‘/(^)M}xl0‘'cm.»

0 0 27*9

003 0*11 27*9

006 0*18 27*7

010 0-37 27*1

0-20 0*74 24*8

0-30 111 21*6

0-40 1*48 18*0

0-50 1*86 14*6

0-60 2*21 11*4

0-70 2-68 8*78

0-80 2-95 6*73

0-90
j

3 32 614
100 3*69 3*93

1-20 4*43 2*33

1-40 6*17 1*43

1-60 5*91
j

0*904

1-80 6*64 0*693

200 7*38 0*402

2-60 9*23 0*172

300 11*1 0*084

3-50 12*9 0*046

400 14*8 0*027

4-60 16*6 0*017

5*00 18*6 0*011

^ for hydrogen. ^ ^ 4
lielium.

t ZeUs.S, Phyaih, 54 (1929), 347.
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Substituting in the expression (4) for 7(0), we obtain, after an ele-

mentary integration,

Tia\ _ 647r^M^{2A2+7:2)2
(
9
)

where for hydrogen A — ly A = 2/®^,

and for helium ^ = 4, A = S-SG/uq.

By means of this formula the angular distributions of electrons elasti-

Fig. 21. Elastic cross-sections for hydrogen and helium.

cally scattered in hydrogen and helium may readily be calculated. In

Table I I{6) is tabulated as a function of vsin|0 for these two atoms.

The total elastic cross-section Qq may now be calculated. We have

tr

Qq =1 2n
j

I{6)8in9 dd

0

_ 1024^7rSmM(3A^+ 18A2P-f28jfe^) . .

“
3fe4A2(A2+4P)8

• V ;

Qq is a monotonic function ofk= 27rmvlhy as is clear from Pig. 21,

where Qq is plotted against k.

3.1. Comparison vdth experiment

Measurements of the angular distributions of electrons scattered

elastically by helium atoms have been carried out by a number of

investigators,t for electrons with energies ranging from 1-8 to 700 volts.

t Dymond and Watson, Proc. Boy, Soc. A, 122 (1929), 671 ; MoMillen, Phys. Rev,

36 (1930), 1034; Bullard and Massey, Proc, Roy, Soc, A, 133 (1931), 657 ; Ramsauer and
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In Fig. 22 the experimental curves for electrons with energies greater

than 50 volts are compared with those calculated from the formula (9)

above. As the experiments are unable to furnish absolute values of the

scattering, the scale has been adjusted so that the observed and calcu-

lated values of the scattering for 700-volt electrons agree.

Fig. 22. Angular distributions of electrons scattered by helium atoms.

It is seen that the agreement then obtained at voltages above 100

volts is quite good over a large angular range. However, at both small

and large angles of scattering noticeable discrepancies occur. Thus, for

electrons with energies less than 500 volts the scattering becomes almost

independent of angle at large angles of scattering instead of falling off

uniformly with increase of angle (see inset figure). This behaviour is

Kollath, Ann, der Phys. 12 (1932), 629; Werner, Proe, Roy. Soc. A, 134 (1932), 202;

Hughes, McMillen, and Webb, Phys. Rev. 41 (1932), 154; Mohr and Nicoll, Proc. Roy.

Soc. A, 138 (1932), 229, 469.
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explained in § 5 as due to the distortion of the incident wave by the

atomic field.

At small angles of scattering the observed variation of intensity with

angle is greater than the calculated. This seems to be due to polariza-

tion of the atom by the incident electron and will be further discussed

in Chap. X, § 1.

For voltages less than 100 volts the agreement is unsatisfactory at

all angles. The reasons for these deviations will be discussed in § 5 of

this chapter and in §§ 4, 6, and 7 of Chapter X.

It thus appears that Born’s formula (9) is approximately vahd for

electrons of energy greater than 100 volts, scattered by helium atoms,

but it is not completely accurate over the whole angular range until

the electron energy is as great as 500 volts.

4. The calculation of I{d) and Qq for complex atoms

There are two methods available for the determination of the field

V{r) for other atoms than H and He: the self-consistent field method

of Hartree,! and the statistical method due to ThomasJ and Fermi§ in

which the atomic electrons are treated as a degenerate gas. Of these

two the most accurate is certainly Hartree’s method. The apphcation

of this method to complicated atoms such as mercury is, however, a

lengthy procedure. For the more complex atoms the method ofThomas
and Fermi may be applied immediately, and since it is a statistical

method it will be more accurate for such atoms than for the lighter ones.

Using potentials given by Hartree’s method, the differential cross-

sections for colhsions of electrons with various atoms may be calculated

by numerical integration from the formula (4). Actually the self-

consistent field was first used for the calculation of the F-factorsH in-

volved in the scattering of X-rays by crystals, and the corresponding

values for the scattering of electrons may be obtained from these by

means of the relation

(
11

)

obtained in Chap. VII, eq. (8). In Table II the values of I{d) calculated

in this way are given for a number of atoms as a function of F* sin

where V is the electron energy in volts and 6 is the angle of scattering.

For all atoms the resulting angular distribution falls off uniformly with

t Proc. Comb. PhU. Soc. 24 (1927), 89, 111, and 426.

t Ibid. 23 (1926), 542. § Zeits. f. Physik, 48 (1928), 73.

II Cf. James and Brindley, Zeits. f, CrystaU. 78 (1931), 470.
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TABLE II

I{d) calculated from Hartree Fields

To obtain cross-sections in absolute units multiply by 5*66 x 10*”*®.

A
0-1 0-2 0-3 0-4 0*5 0-6 0-7 0-8

!

0-9
:

1-0 1-1

Volts)sm|0 1-22 2-45 3-67 4-90 612
1

7-35 8-57

1

9-80

i

11-02
1

12-25 13-47

Li 6400 900 275 112 64 36 24 15 10 7 5

Be 12100 2760 a55
i

225 108 61 37 23 17 12 8

B 22500
1 4220 1180 425 196 100 59 35

j

24 17 13

C 19600 5610 1780 655 295 148 88 53 35 25 18

N 14400 4900 1960 860 415 222 123 74 4S 32 23
0 8100 4550 2080 1020 540 295 172 104 67 45 31

F 14400 4900 2560 1240 645
1

361 210 130 85 56 40
Ne 4900 3900

i

2180 1220 700
j

420 256 156 106 72 49

Na 18200 4900 2280 1290 772 470 289 188 126 85 59
Mg 22500 7200 2820 1890 830 515 327 220 149 100 70
AI 40000 10200 3-^100 1600 900 558 361 237 164 114 83

Si 70000 13200 4150
1

1830 1000 610 400 275 188 130 94

P 67600 15600 5300 2220 1160 675 436 ' 289 204 144 104

S 57600 17400 1 6130 2600 1340 770 480 324 S 222 160 116
Cl 57600 20300 7410 3130

1

1520 850 530 346 243 173 125

A 48400 18200 7100 3380 1660 930
1 1

580 380 268 193 142

increase in angle of scattering. At a given velocity of impact the rate

of decrease of scattering with angle is greater, the smaller the atomic

number of the element concerned.

4.1. Use of the Thomas-Fermi field. High-velocity encounters^

In the method of Thomas and Fermi we introduce the auxiliary

variables x, defined by

= rV(r)

X =
(
12

)

Then <(> satisfies the differential equation

subject to the boundary conditions

^(0) = 0, ^(oo) = 0.

The quantity xjr defines the reciprocal of an ‘atomic radius’ which we
see is a monotonic function of Z.

The function
<f>
has been tabulated by Fermi as a function of x, and

t Bullard and Massey, Proc. Gamh. Phil. Soc. 26 (1930), 666.
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SO V{r) may readily be obtained from this table and the equations (12).

On substitution in the expression for I[d) we obtain

34/3^2^1/3 r 12m- . (13)

L 0

where = mv sin

Since (f>[x) is independent of Z, we see that is a function of

fi only, i.e. of Z-^^^vsin ^6 only. As a consequence I{6) may be obtained

for all atoms, if a table is prepared giving /(0)Z“2/3 as a function of

Z-V^v sin In general this can only be done by numerical integration;

but in the special case of large /a, corresponding to high velocities of

impact, an approximate explicit expression for 1(6) may be obtained.

This ist

where — vjc.

This formula shows that for these fast collisions the Rutherford

formula is a close approximation. The second term, which represents

the effect of the atomic electrons, does not resemble in any way the

correction, often applied, of substituting Z^+Z for Z^ in the Rutherford

formula, but it must be remembered that no inelastic collisions have

been taken into account in deriving the result. As an example of the

magnitude ofthe correction, we find that for the scattering of 70-kilovolt

electrons by gold atoms the correctionJ to the Rutherford formula is

25 per cent, for angles of scattering of 20°.

The numerical integration required to tabulate I{6)Z~^^ as a function

of /X (i.e. of Z-^/^v sin ^0) was first begun by Mitchell§ for a few values

of [M and completed over the whole range from /x = 0to/x=15by
BuUard and Massey.

||
The results of these calculations are embodied

in Table III.

Comparison with the values given by the Hartree field shows that the

two methods give equivalent results for the heavier atoms, but disagree

for the lighter, particularly for those atoms with abnormal sizes such

as the rare gases and the alkali metals. The statistical method naturally

takes no account of individual differences between atoms and so does

not apply satisfactorily to these atoms.

t Bullard and Massey, Proc, Camb. Phil. Soc. 26 (1930), 656.

t This correction takes no account of any relativistic effects.

§ Proc. Nat. Acad. Sci. 15 (1929), 620.

II
Proc. Camb. Phil. Soc. 26 (1930), 666.
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TABLE III

Scattered Intensities calculated from the Thomas-Fermi Field

Fio. 23. Total elastic cross-sections calculated by use of the Thomas-Fermi field.
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The calculation of total cross-sections may be carried out by a second

numerical integration. It may easily be seen that is a function

of only. This function is illustrated in Fig. 23; it is important to

note that the cross-section is a monotonic function of the velocity.

5. The validity of Born’s first approximation

The exact formula (Chap. II, eq. (17)) for the differential cross-section

is
1 00

.

2

I[d) doj ~ 2 (2n-l-l)(c2^^«— l)i^(cos0) dw. (H)

In Chap. VII, § 2, it was shown that the Born formula can be expanded

in the form , ^ 2

I{e)da>^rr^ 2(2»+1K„P„(co8 0) dco, (16)
iC ^*“0

00

where
J

F(r)[J„+j(&r)]V dr. (16)

0

The two formulae wiU thus give identical results if exp(2i7^^J~-l may
be replaced by 2t^^. This can clearly only be the case if is small, and

in Chap. II, § 2, it was shown that under these conditions is a good

approximation to We have then, as the condition of accuracy of

Born’s formula, for all angles 0, that

J
F(r)[J„+j(iT)]V dr < 1, for all n. (17)

0

When this condition is satisfied for most, if not all, values of n which

contribute significantly to the sum (14), then we can expect that, for

small angles, Born’s approximation wiU stiU remain valid. This has

already been discussed in Chap. VII, § 5, in which it was shown that

the condition
F(l/ifcd) < E0 (18)

must be satisfied in order that Bom’s approximation should be valid

for scattering through an angle 6, E being the kinetic energy of the

incident particles.

Table IV gives a comparison, for hydrogen and helium, of the exact

values ofthe phases for a number of electron energies,']’ with approxi-

mate values calculated from (16) by means of the formula

‘tnhne^l

kh^

(2Z^+kX\

t Calciilated by Maodougall, Proc, Roy. Soc. A, 136 (1932), 649, by numerioal integra-

tion of the appropriate differential equations.
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where is a spherical harmonic of the second kind. This gives in

particular

Co
27rhn€^(

(log(1 +
k^al

\

An estimate is also given of the number of phases required when the

exact expression (14) for the scattering is used.f

TABLE IV

Comparison of Exeunt and Approximate Expressions for Phases

Helium lo Vi Number of

terms requiredka^ Volta Exact Bom
—

1

Exact Bom Exact Born

1-05 15 1-360
1

0-565 0-052 0-042 0-0065 0-0054 1

1-92 50 1-093 0 734 0-186 0-148 0 0411 0-0329 4

300 122 0-898 0-731 0-272 0-224 0-0946 0-0769 6

400 215 0-784 0-687 0-301 0.264 01304 0-1130 8

500 340 0-696 0-638 0-308 0-274 01524 0-1378 10

Hydrogen lo Number of terms

requiredkaQ Volta Exact Born
.

1-0 13-5 0-905 0-596 1

2-0 54 0-694 0-602 3

3-0 122 0-568 0-534 5

4-0 215 0-490 0-472 6

5-0 340 0-432 0-422 8

It would appear from a study of this table that the approximation

should be fairly accurate for electrons with energy >100 e.V. in helium

and >75 e.V. in hydrogen. This is in agreement with the available

experimental evidence discussed in § 3.1 of this chapter.

Table V gives some values of Co calculated numerically from (16)

using the Fermi-Thomas fields of the heavier rare gases, together with

the approximate number of terms required in the expansion (14).

TABLE V

VoUage n Voltage c. n

Neon 20 4-5 2 2,000 2-0 10

Argon 30 5-6 4 3,000 2-9 20

Krypton 48 8-8 6 4,800 4-65 30
Xenon 64 11-5 6 6,400 6-1 40

n — appro3dmate number of terms required in series of partial cross-sections.

From these figures we expect that Bom’s formula should be fairly

t For these light atoms the criterion (18) is not precise enough to be ofmuch assiatanoe

in determining the angular range of validity for any given electron energy.
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accurate at about 1,000 e.V. in neon and argon and possibly also in

krypton, whereas xenon is more doubtful.

At sufficiently high electron energies the Born formula will be com-

pletely valid—all the phases being small. As the energy is reduced the

phases increase. In general, at a fixed energy, they decrease with n, so

the first phase to become too large, to be given accurately by (16), will

be tjq. Under these conditions we may write

m =
(
20

)

where 4 is the scattered intensity given by the Born formula. The devia-

tion of the scattering from Born’s approximation will be most marked
where 7^(0) is small, i.e. at large angles. As the correcting term does not

vary with the angle, the scattering should first deviate by remaining

nearly constant at large angles instead of falling off uniformly. Referring

to Fig. 22 we see that this is just the way in which the observed curves for

helium do deviate at large angles. The progressive increase in impor-

tance of the deviation as the electron energy decreases from 700 to 100

e.V. is also manifest.

If the atom is heavy enough, contributions due to departure of

exp( 2ir]2)—l, etc., from 2i^, 2i^2 >
will become impor-

tant as the electron energy decreases. When this is the case the depar-

tures from Born’s approximation at large angles will vary with angle

in a more complicated fashion. Fig. 24 illustrates experimental results

obtained by Arnotf for the scattering of electrons by the heavier rare

gases. At the electron energies indicated Born’s formula gives good

results for neon over the complete angular range investigated (15-120°),

and for argon, krjrpton, and xenon up to angles of 80°. For greater

angles of scattering small deviations may be observed for these heavy

gases (see Fig. 24(6)). The nature of these deviations indicates that,

whereas for argon they arise from the zero-order term only, higher-order

terms are also affected for krypton and xenon. As the energy of the

incident electrons is decreased the angular range of validity of Born’s

formula is found to decrease, as expected. Thus, for 200 e.V. electrons

in neon, the formula fails at angles beyond 90°. The agreement between

theory and experiment is thus very satisfactory.

6. Multiple scattering

So far we have considered the distribution in angle of electrons which

have suffered single scattering only. In many experimental conditions,

f Proc. Roy, Soc, A, 133 (1931), 616.

O
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0 20“ 40® 60° 80° 100°

Angle of Scattering

Fig. 24(a). Small angle scattering.

Angle oF Scattering

Fig. 24(6). Large angle scattering.

Angular distributions of electrons scattered by rare gas atoms.

however, the distribution observed is a mean resulting from multiple

scattering of the electrons. Thus it is usually much more convenient

to observe multiple rather than single scattering through small angles.
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Furthermore, the effect of multiple scattering in producing spurious

curvature of tracks in a cloud chamber may often be so serious as to

mask completely the effect due to an applied external magnetic field.

It is therefore important to consider the multiple scattering in some

detail.

The essential features have been brought out very clearly in a simple

treatment due to E. J. Williams.f We consider a beam of electrons of

velocity v incident on a foil of thickness t containing N atoms/c.c. of

atomic number Z. Then the chance that an electron will suffer a single

deviation through an angle between 0 and is given by

p{e) de = 27TNti{e)smedd,

- {S7rNtZh^l(m^vY)} ddjd^,
(
21

)

where = (1—v^/c^)-!,

provided the angle of scattering is small, the shielding effect of the

atomic electrons is negligible, and Ze^jhc is 1 (see Chap. IV (42)).

We now define an angle 0, such that the chance of a deviation through

an angle > is unity. Thus
ei ^ K,

(
22

)

where k = 4:7TNtZh^l{m^v^^). (23)

Owing to the rapid increase of scattering probability with decreasing

angle there will be a great number of collisions in which the deviations

are appreciably less than These will give rise to an approximately

Gaussian distribution for the resultant deflexion, viz.

Pi(a) doL — —expf— - doc, (24)
rra

[ 2^,2)

where a is the arithmetic mean, and oc^ the mean square, of a. Hence

oi^ is the sum of the squares of individual deflexions which build up to a,

giving ^ 0^

a* = J
02^(0) de

0

= 2K[log0];>. (25)

according to (21) and (22).

To obtain a finite result we must allow for the shielding by the atomic

electrons. This reduces the scattering through angles < to a negli-

gible value. The value of depends on whether the Born or classical

t Proc, Boy, Soc. A, 169 (1938), 631 ; Phys, Bev, 58 (1940), 292 ; Bev. Mod, Phys, 17
(1946), 217.
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approximation is valid, i.e. according as Ze^jhv is or ^ 1, respectively.

Ifa is the effective distance from the nucleus at which shielding becomes

important then, as shown in Chap. VII, § 5,

^min — h/{2'trmvya) {Ze^/^v < 1), (26)

~ Ze^l{mv^a) (Ze^lhv > 1). (27)

In applications to electrons (26) is usually the appropriate approxima-

tion, giving
2dllog{2nmVYaejh}. (28)

The scattering remains multiple for angles < 62 whereW = Pie^)-

In order that the approximation be valid so that the average deflexion

be due almost entirely to multiple scattering we must have

02 > a > 01*

This requires that e, > ^mln>

or, substituting from (26) and (22),

l6TT^NtZh^a^l{h^v^) > 1. (29)

On the basis of the Fermi-Thomas statistical model of the atom, a is

of order so the condition becomes

when>/S = >,/c,
-0-52X10-,

To obtain a more definite value for the shielding distance we note that,

on the assumption of the Fermi-Thomas atomic field, I{6)Z~~^^ is a

function of Z~^^^mvy sin given in Table III. For small angles 0 we
may write

1(d) = {iZh*l(mh;*yW^)]g{Z-'‘i^mvyaoe/h). (30)

9mia is defined by

Bi

j
g{Z-V3mvyaoeiri) d(log0) = log(fli/0n„„). (31)

Numerical integration then gives

^min = 2-10Z^h/(mvya^), (32)

= 0-0153Z^/(py),

so that (28) becomes

= 20flog(66-3j8yZ-W>0i). (33)

If 1(6) is calculated using the Hartree field (Table II), the ntunerical
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value of the coefficient is changed from 2*10 by a small amount. How-
ever, as it only appears logarithmically, there is no serious error intro-

duced by using the Fermi-Thomas value for all but the Ughtest atoms.

Williams has also calculated the appropriate expression for when
classical scattering prevails. He finds, again using the Fermi-Thomas

field, that 0^^ ^ 3-8Z*^ey{mv^yao). (34)

An important application of multiple-scattering theory is to the

tracks of fast particles in a cloud chamber. Here it is not the angle 6

which is observed, but its projection ^ on the plane perpendicular to the

line of sight. Following an exactly similar method, the mean square

average angle 8^ of projected scattering is found to be

P = (35)

Km = l-75Zmi{mvyao)

= 0-0128Zi/3/(jSy).

X is the path length of the track and be taken as the maximum
angle easily recognized as single scattering (about 0*1 radian). This

gives rise to a spurious radius of curvature pg of the track, wheref

Pb ==
/3U£

I2/ P’
(36)

A more rigorous theory of multiple scattering has been given by Goudsmit
and SaundersonJ which confirms the accuracy of the simpler theory to within

a few per cent.

Let p(d) do) be the chance that, in a collision, the particle will be scattered into

the solid angle dw, i.e. p(0) I{e)/Q,

where Q is the total cross-section. Consider p{6) to be expanded in the form

P(S) = 2 (2n-f l)APJcos^). (37)

Then, after two collisions, the chance of finding the particle moving in the solid

angle dw about 6, <j) will be given by
TT 2Tr

p2(P) dd ^ jj
^ d6d(f>, (38)

0 0

where cos^a = cos^cos^i-f sm^8in^iCos(^i— ^).

Using the formula

PnicoaOt) = P„(cos^)P„(oo80i)+2 |^^^|^(CO8e)P^(cO80l)cOSW(^-^l).

we find Pj(®) = 2(2»»+l)(/n)*-fn(cos^), (39)

and, in general, after a collisions

p,{e) == 2(2n+l)(/„)*P„(co8<?).

t Bothe, Phi/3. Rev. 70 (1946), 821.

t Phya. Rev. 57 (1940), 24, and 58 (1940), 39,

(
40

)
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If W(«) is the chance that a particle suffers s collisions, the multiple-scattering

angular distribution function is given by

= 2 w.pM
Taking for the Poisson distribution

W. = e-V/sh (41)

where v is the chance of one collision,

Pm{6) = 2 (2n+l)exp{-v(l-/J}P„(co8ff). (42)

For scattering by the Fermi-Thomas field, Goudsmit and Saunderson obtain

exp{—v(l—/„)} = expj^|n(n+l)/f{log(j6niin)— (43)

where 6m\n is as given by (32). Using the formulae (42) and (43) it may be shown

that, to a high degree of approximation, the multiple-scattering distribution is

Gaussian with ^ ^ 2Klog(O-640,/e:„to). (44)

This is to be compared with Williams’s result

Oi = 2#clog(^i/^niin)*

The most complete series of experiments on multiple scattering of fast

electrons have been carried out by Kulchitsky and Latyschev.t They

used homogeneous electron beams of 2*25 M.e.V. energy scattered by

foils, the scattered current being measured by counters. The comparison

of their experimental results with the theories of Williams and of

Goudsmit and Saunderson is shown in Table VI. It will be seen that

TABLE VI

Comparison of Observed and Calculated Half-Widths of Multiple

Scattering Distribution for 2*25 ikf.e.F electrons

Element M
j

Ze^lhv

Half’Width of Gaussian distribution (degrees)

Ohs,

Williams's theory

Goudsmit and
Saunderson

theory

BomClassical Born

A1 60-2 0*10 9*60 12*1 9*8 9*4

Fe 41-4 0*20 9*60 11-9 9*9 9*6

Cu 46-8 0*22 10*40 10*4 11*05 10*5

Mo 36-6 0*32 10*25 ,

,

10*75 10*35

Ag 351 0*36 10*20 10*80 10*30

S 34-2 0*37 10*65 11*9 10*90 10*66

Ta 28-7 0*65 9*85 ,

,

11*00 10*96

Au 29*4 0*60 9*9
.

,

11*40 11*35

Pb
1

26* 1 0*62 9*7 10*6 10*85
1

1

10*85

m Ntz^i^
Af = —n. —

—

, which must be ^ 1 in order that Williams’s theory be applicable

(see (29)).

t Phys. Eev. 61 (1942), 260.
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the two theories give nearly the same results. For all but the three

heaviest elements the agreement with experiment is very good, espe-

cially with the more rigorous theory, provided the Born and not the

classical expression for the angle 6^ of cut-off is used. This would be

expected for, in all these cases, Ze^jhv is considerably less than unity.f

For the heaviest elements investigated, the theoretical distributions,

which agree closely, give half-widths between 10 and 16 per cent, too

large. Exact agreement would not be expected as, for these elements,

relativistic effects are no longer given to a close approximation by the

expression (21).

These general conclusions are confirmed from the work of other

investigators. In earlier work,J in which cloud chambers were used,

the discrepancies with theory were somewhat greater; but in the most

recent cloud-chamber observations of Oleson, Chao, and Crane§ they

are reduced to much the same value as in the work of Kulchitsky and

Latyschev.

t Contrast this with the multiple scattering of a-particles (Chap. XII, § 2.4) for which

Ze^jhv and the classical approximation gives the best results.

t Oleson, Chao, Halpem, and Crane, Phys. Rev. 56 (1939), 482 and 1171 ; Sheppard

and Fowler, ibid. 57 (1940), 273 ; Crane and Slawsky (quoted by Goudsmit and Saunder-

son, ibid. 58 (1940) 39).

§ Ibid. 60 (1941), 378.
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ELASTIC SCATTERING OF SLOW ELECTRONS BY ATOMS

1. The Ramsauer and Townsend effects

As was shown in Chap. IX, § 5, Born’s first approximation is not

applicable to low-velocity collisions of electrons with atoms, and the

experimental results obtained in this region show clearly that a more

elaborate theory is required.

In a preliminary investigation in 1921 of the free paths of electrons

of very low velocity (0*75 to 1-1 volts) in various gases, Ramsauerf

found the free paths of these electrons in argon to be very much greater

than that calculated from gas-kinetic theory. The extension of those

observations to a wider range of velocities} revealed a surprising varia-

tion in the cross-section. It was found that the effective cross-section

(proportional to the reciprocal of the free path) of argon atoms increases

with decreasing velocity until the electron energy becomes less than

10 volts. For electron energies below this value it decreases again to

the low values found in the preliminary measurements. Independently,

Townsend and Bailey§ examined the variation of free path with velocity

for electrons with energies between 0*2 and 0*8 volts by a different

method, and showed that a maximum of the free path occurs at about

0*39 volts. This was confirmed by much later work of Ramsauer and

KoUath.ll

Since these classical experiments were carried out, the behaviour of

a large number of gases and vapours has been examined over a wide

voltage range,tt The results obtained are illustrated in Fig. 25 for some

monatomic gases and vapours. In these figures the variation of effective

cross-section with velocity is illustrated. This is proportional to the

reciprocal of the mean free path. For purposes of comparison the gas-

kinetic cross-section is indicated on the figures.

The striking features of the cross-section-velocity curves are their

wide variation in shape and size and also the marked similarity of

behaviour of similar atoms, such as those of the heavier rare gases and
the alkali metal vapours. At the time of the earlier measurements no
satisfactory explanation of the phenomena could be given, but on the

t Ann. der Phya, 64 (1921), 513. J Ramsauer, ibid. 66 (1921), 545.

§ Phil. Mag. 43 (1922), 593; 44 (1922), 1033.
}1
Ann. der Phya. 3 (1929), 536.

ft See, for example, the summaries by Kollath, Phya. Zeita, 31 (1931), 985; Brode,
Rev. Mod. Plvya. 5 (1933), 258; McMillen, ibid. 11 (1939), 84; Massey and Burhop,
Electronic and lonw Impact Phenomen>a, Chap. I.
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introduction of quantum mechanics it was immediately suggested that

the effect was a diffraction phenomenon. Thus Bohrf suggested in

general terms how the minimum cross-section observed in the rare gases

near 0-7 volts could be explained. The field of a rare gas atom falls off

5 <-

?il
Nc Gas -Kinetic

Cross sections

0 I 2 3 4 S^Volts

Gas -Kinetic

Cross sections

Fkj. 25. Observed variation of effective cross-section with electron velocity.

very much more rapidly with distance than that of any other atom,

and might be expected to behave in much the same way as a spherical

potential well, discussed in Chap. II, § 3. It was shown there that the

well may be deep enough to introduce within its range one or more
complete wave-lengths of zero angular momentum without affecting

waves of higher angular momentum appreciably. An observer at a

great distance from the atom will then fail to observe any scattering.

Strong experimental evidence of the wave nature of the phenomena

t In conversation with Professor R. H. Fowler.
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was afforded by measurements of the angular distributions of the

elastically scattered electrons. These were first carried out for electrons

of energy between 4 and 40 volts by Bullard and Massey for argon,f

Fig. 26. Observed angular distributions of electrons scattered elastically by
argon atoms.

Instead of the curves characteristic of Born’s first approximation,

showing a monotonic decrease of intensity with angle of scattering, the

curves obtained by Bullard and Massey exhibit maxima and minima.

In Fig. 26 a series of curves is given illustrating the variation in form of

t Proc. Roy. Soc. A, 130 (1931), 579.
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these curves, for argon, as the electron velocity increases from 1*1 volts

to 780 volts; they show the gradual transition to the curves predicted

by Born’s first approximation. The higher voltage measurements

(42-780 volts) are due to Amot,t and at the lowest voltages (1*1 and
2*8 volts) to Ramsauer and Kollath.J These experiments have now
been carried out for a large number of gases over a wide range of elec-

tron energies, and it is found that in the majority of cases maxima and

minima occur in some voltage range.§ For light gases, such as hydrogen

Angle of Scattering

Fio. 27. Illustrating the finite scattering through small angles. I. Curve for 6 volt

electrons scattered by neon atoms. II. Curve for 7 volt electrons scattered by nitrogen

molecules.

and helium, this range is small (up to 15 volts in helium and 6 volts

in hydrogen), while for mercury pronounced maxima and minima are

observed up to the highest voltages for which observations have been

taken (800 volts). From these experiments it is obvious that the wave

nature of the electron is important over a wider range than is apparent

from the observation of effective cross-sections.

It is of interest to examine the evidence from the angular distribution

measurements as to the validity of the theoretical result (Chap. VII,

§1.1) that the function 27r/(0)sin0, giving the number of electrons

scattered per unit angle by a gas atom, tends to zero as 0 tends to zero.

In Fig. 27 two experimental curves representing scattering per unit angle

t Ibid. A. 133 (1931), 615.

X Ann, der Physik^ 12 (1932), 629.

§ See McMillen, Pev. Mod. Phys. 11 (1939), 84, and Massey and Burhop, Electronic

and Ionic Impact Phenome7%a, Chap. II.
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are illustrated, and it is seen that the evidence is in favour of the

theoretical conclusion.

2. Thetheory of the scattering of low -velocity electrons. Method
of partial cross-sections

In order to develop a theory ofthe scattering of low-velocity electrons

by atoms, we must refer to the general theory of Chapter VIII. The wave

function Y, which in this case represents the system of atom+ incident

electron, was expanded in the form

where wave function representing the nth excited state of

the atomic system. It was then shown that the function i^^(r) satisfies

the equation

^ J
F(r.r„)T(r„,r)^*(r„) dr^,

where F(r, r^) is the interaction energy between the incident and atomic

electrons, and is the wave number of the outgoing electron wave,

equal to 27rmvjh.

If we neglect electron exchange, the elastic scattering is completely

determined by the function which satisfies the equation

{VHm(r) =^ J
F(r,r„)T(r„,r)^?(r„) dr,. (1)

To solve (1) we must substitute some approximate form for T on the

right-hand side of ( 1). For instance, in obtaining Bom’s approximation

in Chapter IX we neglected all the scattered waves, and replaced T by

*Ao(ra)exp(ii^2). In the approximation, to the examination of which this

chapter is devoted, we neglect all but the elastically scattered wave,

and thus set on the right-hand side of (1)

Y==Ura)m-

We thus obtain jv*+)fc2-?^J^{r)ji;(r) = 0, (2)

where T^(r) = J F{r,r„)^ioi/'o dr,.

This is the equation which represents the motion ofthe incident electron

in the static field of the atom, being just the potential of this field.

We have thus, to this approximation, reduced the problem to that of

calculating the scattering by the static field of the atom concerned.
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The method required for this calculation is described in Chap. II, § 1.

Since we shall have no further occasion to consider the inelastic scatter-

ing in this chapter, we shall drop the suffix q in -PJ, and ^00-

If we expand the function F in the form

i’ = 2i;(r)P,{co8 0),
8

and substitute in (2), the function i^(r) satisfies the equation

§im+ = 0. (3)

As shown in Chapter II, the solution of this equation, which is finite at

the origin, will have the asymptotic form

rF^ ~ A,sin(i:r—

being a phase constant. The amplitude f{d) of the scattered wave

was shown in Chapter II to be given by

i2 (2«+ l)[exp(2i77,)- l]P,(cos 6), (4)

and the differential cross-section for elastic scattering into the solid

angle dw is ^ |2

The total elastic cross-section Q is given by

TT

Q = 27r
j

I{d)sind dd;

0

we thus obtain Q =

where Qg — 47ri~2(25+l)8in2T7^. (5)

We refer to Qg as the partial cross-section of order s.

Bom’s first approximation holds only when rjg is small, so that sin 7)g

never passes through a maximum due to rjg reaching the value Thus

to this approximation one expects no oscillations in as a function of

the energy. This is no longer the case if r]g may become greater than ^tt.

The classical approximation to l{6) m never valid for electron scatter-

ing problems, but Jeffreys’s method, particularly as modified by Langer

(see Chap. VII, § 6.2), may usually be employed to obtain a good

approximation to a phase yjg which is not too small.

It was shown in Chap. II, § 2, that, if

V{r)< «(«+!)

r* 2m’
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for r given by kr ~ {s{s+ 1)}*,

the contribution of all phases with n > s can be neglected. The con-

vergence will thus be best for light atoms and slow electrons (see

Chap. IX, § 5).

3. General application of the method of partial cross-sections

3.1. Condition for existence of a Ramsauer-Townsend effect

It has already been pointed out that a vanishing cross-section near

the low-velocity limit can occur if the field is strong enough to introduce

one or more additional wave-lengths, i.e. one or more additional zeros

of the wave function Fq within the field. For this to be possible the field

must be strong enough to introduce respectively one or more discrete

energy-levels of zero angular momentum. The effect cannot occur with

a repulsive field for the reasons discussed in Chap. II, §
4—the phase

can only equal stt for such a field if it eliminates s complete wave-lengths

which would exist if the field were not present. This is not possible at

low energies because the wave-length is then much greater than the

range of the field. At higher energies it may occur, but then higher-order

phases must be affected also and their contributions will prevent the

total cross-section from becoming abnormally small.

Quantitative calculations, discussed in § 4, confirm this explanation

of the Ramsauer-Townsend effect.

3.2. Explanation of other general features

We now give a general explanation of the following experimental

facts:

1. The magnitude of the cross-section varies between wide limits, the

maximum observed for the alkali metals being over 100 times that

observed in neon.

2. The angular distributions of the scattered electrons show marked

maxima and minima.

3. The cross-section-velocity curves have forms characteristic of the

different columns of the periodic table.

In order to do this we make use of the following properties of the

calculated phases:

() For any atomic field decreases monotonically with s.

() rjg is small when, for r such that kr ~
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It follows from (6) that the series of partial cross-sections will converge

quite quickly for low-velocity impacts; the major contribution will arise

from the partial cross-sections Qg of such an order that rjg cri Jtt. The
maximum value of the contribution from a partial cross-section of

order s is .

= ^( 25+ 1 ).

We may therefore say at once that, the lower the velocity and the

larger the value of s for which the phase rjg attains the value Jtt, the

bigger will be the cross-section. Referring to the condition (6), we see

that the biggest collision cross-sections will be those of atoms whose

fields extend out to the greatest distances, viz. the alkali metals. If we
use the empirical rules due to Slaterf for the effective nuclear charges

of alkali atoms, and define the diameter of an atom as the distance at

which the radial charge density of the outer shell is a maximum,
the following values of the radii of various atoms are obtained;

TABLE I

Tq in atomic

units

kr^

1 3 volts 0-5 volt

Li 2 3 2-3 0'46

Ni 41 41 0-82

K 61 61 1-22

Zn 31 3 1 0-62

He 0-6 0-6 0-12

Ne 0-7
j

0-7 014
A !

1-3 1-3 1 0-26

Kr
i

1-7 1-7 0-34

Note, k is measured in imits of l/dQ.

We give also the values of kvQ corresponding to 13 and 0-5 volt

electrons. Thus, using the criterion (6), we find that for potassium at

least 7 harmonics are required, and the cross-section may be greater

thant 507rag, whereas one harmonic only is required for neon, and the

effective area will not be greater than lOTrag. For k = 0-2laQ (0*54 volt),

the area may be as great as SOOTrag for potassium, but still not much
greater than lOTrag for neon or helium. There is, then, clearly no diffi-

culty in explaining the wide range in magnitude observed in the effec-

tive cross-sections. It is equally clear that the method indicates the

t Phya. Rev. 36 (1930), 67.

t The cross-sections obtained in this way will only be approximately correct when
the field is sufficiently strong to produce large phase changes. For collisions of high-

velocity electrons a large number of terms are required in the series, but each is small

and the total cross-section small also.
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possibility of maxima and minima in the angular distribution given by

(4). Again the dominant effect arises from terms in the series such that

Jtt. The angular distribution, then, is roughly of the form

= const.{J^(cos 0)}2,

which has s minima. This will be especially marked for the lower

velocity impacts, where only a few terms of the series (4) are required

and the weight factor 2s -\- 1 is particularly effective. Thus for electrons

of 30 volts energy in argon the angular distribution is given closely by

{JF2(cos 0
)}

2
. Actually the calculated phase values at this velocity are

7^^ == 277+0-885, = 4-831, = 1-983, rj^ = 0-374, 7^4 = 0-159.

It must be reahzed that these remarks are only illustrative, and the

actual effects produced by the sum of a number of partial cross-sections

may be very compheated, particularly for heavy atoms. The diffraction

of waves by spherical obstacles is a much more complicated process

than diffraction by a grating or other symmetrical arrangement.

It is not possible to explain the third feature listed above in such

simple terms as the preceding. The quasi-periodic behaviour of the

partial cross-sections must be due to the behaviour of sin 7/^.. At low

velocities, for the hghtest atoms, only the zero-order phase is appreciable.

An atomic field will behave qualitatively in a similar way to the potential

weU discussed in Chap. II, § 3. At a given velocity, for some atomic field,

the phase tjq will attain a value near ^tt, and for some heavier atom a

value of §77 will be attained, giving an equal maximum of the zero-order

cross-section, and so on. For some atom with intermediate properties

will become appreciable, and so on. In this way some quasi-periodic

behaviour of the cross-sections might be expected, but we still require

to show from the theory that the periodicity follows that of the periodic

table. This was first done by Allis and Morsef using a simplified atomic

model. They took for the atomic field the form

= 0 (r ^ g, (6)

which makes possible an analytic solution of equation (3). In order to

illustrate the periodic behaviour of the cross-sections two quantities,

X and jS, were defined such that

^ = ZlTQj2(lQy X — JCTq,

The first of these depends only on the atomic field, while the second is

t Zeit8,f. Phyaik, 70 (1931), 567.
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a function also of the incident electron velocity. Allis and Morse then
showed that the cross-sections are quasi-periodic in ^ with period unity.

This is illustrated in Fig. 28, where a number of partial cross-sections

corresponding to different values of x are illustrated as functions of
If, now, the approximate atomic radii given by Slater are used (given

above in Table 1) and the constant Z above is adjusted to give as good
agreement as possible of the form (6) for F with that obtained from

Fig. 28. Illustrating quasi-periodicity of partial cross-sections.

Slater’s values, it is found that a period of 1 in ^ is approximately a
whole period in the periodic table. This may be seen from the following

values of p:
TABLE II

Lithium . 1-36 Helium . . 0-77
Sodium . 2*54 Neon . 1*73

Potassium . 3-51 Argon .

Krypton
• . 2'68

. 3-66

The lighter elements are to some extent anomalous in this respect; this

is also borne out by the observations (see Fig. 25 of this chapter).

4. Owantitative application of method of partial cross-sections

The first quantitative application of the theory was made by Holts-

markj for the scattering of electrons by argon; but we shall first con-

sider the results obtained by Allis and Morse using their simplified

model.

Having chosen the values of the parameter jS and using Slater’s

t Compare the behaviour of as function of j8 for « — 0 with the corresponding
behaviour of Qq as function of for ifc == 0 in Fig. 4(a) of Chap. II.

t Zeit8.f» Physik, 55 (1929), 437.

359547 j.
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rules (loc. cit.), it was usually found that a good approximation to the

observed cross-sections is obtained with this model . In Fig. 29 the experi-

mental curves are compared with calculated curves. The values of jS

and Vq used in obtaining the latter are slightly different from those

obtained from Slater's rules (loc. cit), but the differences are not great.

In Table III the parameters which give the best fit with experiment

are compared with Slater’s values, both measured in atomic units.

Fig. 29. Illustrating comparison of observed and calculated cross-section curves.

TABLE III

__
P ^0

Atom Slater From cross-sections Slater From cross-sections

Helium 0-77 0-80 0-6 0-55

Neon 1-73 1-71 0-7 0-75

Argon 2-68 2-7 1*3 1-4

Sodium 254 2*55 4-1 4-25

Zinc 3*77 3-78 31 314

The agreement obtained is very striking and leaves little doubt as to

the correctness of the theoretical explanation of the Ramsauer-Town-

send effects afforded by quantum mechanics. However, the field used

gives only a rough approximation, particularly for very low velocity

collisions. For such cases large effects may arise from the atomic field

beyond the radius r^,. However, Morsef extended the calculations to

the field y ^ exp(_ 2rlr^),

and found that very similar results are obtained, the same quantities

j9 and Icr^ being again important.

HoltsmarkJ obtained very good agreement with the observed cross-

section for argon by using for F the Hartree field modified by an

t Bev, Mod, Phys. 4 (1932), 677. { Loo. cit.
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empirical polarization correction and evaluating the phases by

numerical integration of the differential equations. Without the

polarization modification the agreement is not good.

A much stricter test of the theory may be applied by comparing

calculated and observed angular distributions. These are much more

sensitive to inaccuracy in the theory. In Fig. 30 the angular distribution

curves observed by Bullard and Massey and by Ramsauer and Kollath

Fig. 30. Comparison of obsorvecl and calculated angular distributions of electrons

scattered by argon atoms.

for argon (loc. cit.) are compared with those calculated by using Holts-

mark’s values of the phases The agreement for 30 and 12 volts is

found to be extremely good in view of the peculiar nature of the experi-

mental curves. It is of interest to note that at the lower voltages the

agreement with curves calculated from the simplified model of Morse

and Allis discussed in § 3 is not nearly so satisfactory. At very low

velocities, however, the observations of Ramsauer and Kollath are no

longer in agreement even with Holtsmark’s calculations, as seen from

the figure.

The exact phases have been calculated for only five other atoms,

namely, for krypton by Holtsmarkf using again the Hartree field

modified by a polarization correction, for helium and hydrogen by

MacdougallJ using the interactions given in Chap. IX (8), for chlorine

t Zeita.f. Phyaik, 66 (1930), 49. t Proc. Roy, Soc, A, 136 (1932), 649.
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by Hartree, Kronig, and Petersenf using the unmodified Hartree field,

and for oxygen by Bates and MasseyJ using the Hartree-Fock field with

and without exchange and polarization corrections (see §§ 6, 7 of this

chapter). For krypton the agreement with experiment is again very

good, both in comparison with observed total cross-sections and with

the angular distributions measured by Arnot§ and by Ramsauer and

KolIath,|| except at very low voltages (less than 3 volts).

Fig. 31. Observed angular distributions of slow electrons scattered elastically

by helium atoms.

In the case of helium we find the first definite indication of a failure

of the theory. For such a light atom the only phase which attains

a value of Jtt is that of zero order, and at electron velocities below

20 volts the effect of the higher-order terms is negligible. The corre-

sponding angular distribution is independent of angle; but the observed

curvesff exhibit a minimum when the electron velocity is below 15 volts.

This is illustrated in Fig. 31. The presence of this minimum at very low
velocities cannot be explained by the method of partial cross-sections,

and we must develop the theory further in order to provide an explana-

tion. This is done in § 6.1. Similar behaviour is observed in molecular

hydrogen. It is possible that the effect of the molecular binding is

t Physica, 1 (1934), 901. J Proc. Roy, Soc, A, 192 (1947), 1.

§ Ibid. A, 133 (1931), 615.
||
Ann. der Physik, 12 (1932), 837.

tt Bullard and Massey, loc. cit. ; Ramsauer and Kollath, loc. cit.
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important, but it is much more likely that the reason is the same as

that for helium (exchange).

For a number of other atoms calculations have been carried out in

which the large phases were determined from Jeffreys ’s approximation

(Chap. VII, § 6.2) and the small ones from Born’s approximation (Chap.

VII, § 6.1). To illustrate the kind of accuracy which may be attained

in this wayt Table IV gives the values of the phase shifts calculated for

TABLE IV

Calculated Phase Shifts for 54 Volt Electrons scattered by Krypton Atoms

Phase
n

From OK'yCurate

solution

Jeffreys'"s

approximation
Langer

modification

Born
approximation

9-696 9-597

1 7-452 7-710 7-640

2 4-469 4-748 4-606

3 1-238 1-410 1-355 0-779

4 0-445 0-557 0-535 0-414

6 0-143 0-190 0-174 0-144

54:-volt electrons in krypton calculated by accurate numerical solution

of the differential equationJ and by the approximate methods.§ Values

obtained by use of Langer’s modification of Jeffreys’s approximation

are also included. It will be seen that for r] < 0*5 Born’s approximation

is sufficiently accurate. For larger values of rj Jeffreys’s approxima-

tion is superior and is improved considerably for small-order phases by

the Langer modification.

For mercury vapour Henneberg|| and Massey and Mohrff carried out

calculations in this way using the Thomas-Fermi field. JJ The calculated

angular distributions are compared with Arnot’s observations in Fig. 32,

good general agreement being revealed. Similar calculations have been

carried out for potassium,§§ zinc,|||| cadmium,
|||1

and bromine,tt|

reasonable agreement being obtained in all cases.

It appears that Fax^n and Holtsmark’s method gives good results for

the elastic scattering of slow electrons by heavy atoms. For fight atoms

such as hydrogen and helium it is necessary to proceed to higher

t An empirical discussion of the effectiveness of these methods has been given by
Amot, Proc. Camb. Phil. Soc. 32 (1936), 161.

t Holtsmark, Zeits.f. Physik, 66 (1930), 49.

§ Amot and Baines, Proc. Roy. Soc. A, 146 (1934), 651.

11
Zeits.f. Physik, 83 (1933), 655. tt Nature, 130 (1932), 276.

Xt hoc. cit. §§ McMillen, Phys. Rev. 46 (1934), 983.

}||i
Childs and Massey, Proc. Roy. Soc. A, 142 (1933), 609.

ftt Shaw and Snyder, Phys. Rev. 58 (1940), 600.
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approximations and in the next section we shall do this. It also appears

that higher approximations are necessary to account for the angular

distribution observed at energies in the neighbourhood of the cross-

section minimum for the heavier rare gases.

• Expt points (Arnot)

Fig. 32. Comparison of observ^ed and calculated angular distributions of electrons

elastically scattered by mercury atoms.

5. Electron exchange in elastic collisions

In Chap. VIII, § 4, the possibility of electron exchange between the

atom and the colliding beam was considered. It was shown that an

incident electron may either be directly scattered, or may change places

with an atomic electron. It was shown also that the probability of the

two processes cannot be added; owing to the necessity for using anti-

symmetrical wave functions, one must combine the wave amplitudes

rather than their intensities.

The possibility of exchange interference was first pointed out by
Oppenheimer,t who suggested that this was the explanation of the

minimum observed in the cross-section velocity curves of the heavier

rare gases at very low voltages. In view of the theory discussed in § 3

it is unlikely that this view is correct. For light atoms such as helium

and hydrogen, however, exchange interference seems to be of con-

siderable importance in low-velocity collisions.

t Phye. Bev. 32 (1928), 361.
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6. Calculation of effect of electron exchange in elastic scattering

by hydrogen and helium

We employ the same notation as that used in Chap. VIII, § 4. It was

shown there that the elastic scattering of electrons by atoms ofhydrogen

and helium may be described by means of two wave functions

(?o(r2 )
which have the asymptotic form

^oCri) ~ exp t^Zi+rf Vo{0i, <^i)exp ihr-^.

The differential cross-section for elastic collisions is then

I{e) do> = i{3|/o+flroP+ l/o-ffol*} for hydrogen,

~ I/q—

<

7ol^ for helium.

For simplicity let us consider the case of hydrogen first. The functions

jFo(ri), ^0(^2 )
were shown to satisfy the equations

[V2+PK(r,)=
f
(i-^)'F(r„r,M*(r,)dr„

where the function T(ri,r2 )
is the wave function for the complete

system.

In order to integrate the equations (9) we must assume some approxi-

mate form for T on the right-hand side, so that the right-hand side

becomes a known function. We know that Y may be expanded in

the form

We may write this T* = Fo(ri)^o(*'2)+^>

where O includes all the scattered waves.

Now T may be expanded in the alternative series

= + JK(r2M«(ri).

as we saw in Chapter VIII. If we expand O in the form

‘I> = (| + /)G';(r2)'A>i).

then it is to be expected that C?o in other words, the ‘exchange’

wave is included in O. Thus, if we assume for T on the right-hand

side of (9) Y ^ F,{T^)UT^)^04T^)Ur^)+<l>, (10)

and neglect
<f),

we shall have a fair approximation, which amounts to
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neglecting the effect of all waves with wave-length different from that

of the incident wave.

If we substitute
(
10

)
in (9), we obtain

= I
(lla)

and

[v='+A:==-~F„o(r,)]c?o(r2)

= ——
j* —

—jFo(ri)^o(r2)^J(ri) (11 b)

where l^(ri) = -e®
J
|i_Lj

|0^(r2 ) dr^.

Changing the variable in Oq from Fg to Fj, we obtain, by adding and

subtracting (lla) and
(
11 b),

[vHP-^Foo(rO]{^’o{ri)±G?o(ri)}

= J
(~;^{-Fo(r2)±^o(r2)}Wri)lAo(r2)(irj. (12)

If we expand Fq[t)-±:Oq[v) in the form

Fo(r)±G'o(r) = r-i 2/±(r)P„(cos0), (13)

00

then j|!+ P+l7o„-^^^j/^(ri) = T
J

gn{r^,r^)mr^) dr„ (U)

where
gn{r,r') = i~^^^M’'iyiYn{rvr2)r2Mrz)>

(16)

This gives a set of integro-differential equations for the functions /^.

As for the central force problem, the proper solutions have the asymp-

totic form
sm{kr—^mT+r]n),

and the formulae (17) and (18) of Chapter II for the differential and

total scattering cross-sections are still valid.

To bring out ^ the effect of the exchange in introducing a change of



X, §6 EFFECT OF ELECTRON EXCHANGE 217

phase wo may obtain an integral equation for this change in a manner

similar to that of § 2. 1 ,
Chap. VI. Let be the solution of the equation

(
16

)

which has the asymptotic form

Bm[lcr—\n7T +or„). (17)
Then we obtain

00 00

sin( - a„) = q= JJ
Fjr;)gj^r^, r^)f^{r^) dr^ dr^,

(
1

8

)

0 0

where ~ sin(A;r— |w7r+7y^),

and is the exact proper solution of (14).

If both and are small, i.e. at high electron energies, a good

approximation will be obtained by taking

W=/iW = (^)*Wfo')- (19)

A less drastic approximation, valid if the effect of exchange, measured

by the size of rj'n—cr^, is small, whereas the direct scattering, measured

by is not, is given by taking

= K, (
20

)

with F^ the exact solution of (16). If neither of these approximations

may be made, it is necessary to solve the integro-differential equation

numerically. An alternative possibility in this case would be to use a

generalization of Hulthen’s variation method (Chap. VII, § 6,3).

Before describing the results which have been obtained in investigat-

ing the effect of exchange, it is necessary to call attention to a certain

defect in the derivation of the equations (12).

Referring to Chap. VIII, § 4.1, we see that the wave function must

satisfy the orthogonality relations

J
(T* -^(ri)0o(^2)}0o (^2 )

^'^2 —

/rF-(?o(r,)^„(rOK(r,)ciTi = 0.

(
21

)

The approximate expression (10) with <f}
neglected does not satisfy these

relations. The non-vanishing contribution in each case arises from the

zero-order term in the zonal harmonic expansion of Fq and Oq, For

values of n ^ 0 the equations (12) can therefore be regarded as satis-

factory in this respect. When n = 0, no completely satisfactory way
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of meeting the difficulty has been derived, particularly for the sym-

metrical case. Something further may be done, however, for the

antisymmetrical function. The complete wave function describing the

collision which has the correct symmetry properties is

2-i[T(ri,r,)-T(r2,ri)]. (22)

This can be written

'Ao('-i)K(r.)- ^o(r.)]-^o(^a)Wrx)- Oo(r,)]. (23)

A partial step towards satisfying (21) will be taken if i'Q(r)—(?0(r) can

be made orthogonal to It was pointed out by Feenberg that,t given

any solution ^^(r)— 6^o(r), then the function (22) is unaltered if a con-

stant multiple of ifj^ is added to this solution. He therefore replaced

Fo(r)~Go(r) by Fo(r)~6?o(r)+ci/fo(r), where

c = J [-fi(r)-(?o(r)]^o(»-) dT

= 477 J/o-(r)^o(0'‘^^- (24)

This has the effect of replacing \jr^ by (l/^i2)oo> where

An alternative procedure, which may be employed for all cases which

arise, is to obtain the integro-differential equations in the same way as

the Fock equationsJ for the self-consistent field ofan atom with exchange

included. These equations are strictly valid only for closed states but,

by regarding the continuous state of the colliding electrons as the limit

of a discrete state, they may be employed for the scattering problem.

It must be remembered, however, that although provision exists in this

method for satisfying certain orthogonality conditions, these are not,

in this application, quite the correct ones. Thus, taking the example

of the hydrogen atom, the application of the Fock method gives an

equation for where

2-ipF(r„r,)±T(r„r,)] = 2-»[4(r,)i?’±(r,)-^o(r,)J^±(r,)].

Provision is thereby made for to be orthogonal to but this makes

the ground state function of the hydrogen atom orthogonal to one

representing, not a continuous state of the atom, but of the negative

hydrogen ion. Until a comparison has been made between the different

ways of dealing with the orthogonality question, we cannot be sure

which is the best,

t Phys, Rev, 40 (1932), 40,

t Fock, Zeits.f, Phyaik, 61 (1930), 126. See also Mott and Sneddon, Wave Mechanics
and Us Applieotions, Chap. VI, § 28,
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6.1. Numerical applications to elastic scattering

The first attempts to allow in detail for the effects of exchange in

elastic scattering were made by Massey and Mohrt for hydrogen and
helium, using essentially the approximations (19) and (20). They found

that the effect should become appreciable for electron energies below

15 e.V. in helium and 5 e.V. in hydrogen. It was suggested that much
of the failure of the Fax6n-Holtsmark theory at low energies in helium

(see p. 212 and Fig. 31) was due to exchange. This was confirmed by

Fig. 33. Phase shifts in electron scattering

by helium calculatod with
( 17 )

and without

(cr) inclusion of exchange.

Fig. 34. Comparison ofobserved and cal-

culated total cross-sections for collisions

of electrons with helium atoms.

Calculated with inclusion of ex-

change.
- Calculated without inclusion of

exchange.

O Experimental points (Ramsauor
and Kollath).

X Experimental points (Normand).

Allis and Morse,J who obtained accurate numerical solutions of the

integro-differential equations (12) for n = 0 and n ~ 1 in the form

appropriate to helium, orthogonality being allowed for by Feenberg’s

method. The effect of exchange in modifying the phase shifts is illus-

trated in Fig. 33. It will be seen that for low energies, below 15 e.V.,

the phase is increased substantially as is For the latter, however,

the increase is to values beyond 90°. The net effect is to increase the

importance of the first-order scattering relative to the zero order, giving

a less uniform angular distribution, in agreement with the experimental

requirements. A comparison of the observed and calculated angular

distributions and cross-sections is given in Figs. 34 and 35. It will be

seen that, while much better agreement is obtained when exchange is

t Proc. Roy. Soc. A, 132 (1931), 605; 136 (1931), 289 ; and 139 (1932), 187.

t Phys. Rev. 44 (1933), 269.
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included, there is still a discrepancy at small angles. This is probably

due to polarization, an effect which will be discussed in the next section.

Morse and Allis also discussed a schematic model to represent the

case of more complex atoms and from it were able to produce evidence

suggesting that exchange effects become less and less important the

Fig. 35. Comparison of observed and calculated angular distributions for scattering of
electrons by helium atoms.

Calculated with inclusion of exchange.

Calculated without inclusion of exchange.

O Experimental points for 6 volt electrons (Kamsauer and Kollatli).

X Experimental points for 20 volt electrons (Kamsauer and Kollath).

A Experimental points for 50 volt electrons (Bullard and Massey).

Except for 50 volt electrons, absolute values are compared. For 50 volt electrons scales

are adjusted so that theory (with exchange) and experiment agree at 80°.

heavier the atom. The only calculations of a detailed character which

have been carried out for a heavier atom are those of Bates and Masseyf
for oxygen, using the Fock formulation. As they also included an
empirical polarization term, it is difficult to obtain from their results

any evidence as to the relative importance of exchange.

7. The effect of polarization

So far we have neglected all consideration of the effect of the inelasti-

cally scattered waves on the elastic scattering. This results in a more

t Proc. Roy. Soc. A. 192 (1947), 1.
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rapid increase of scattering with diminishing angle at small angles of

scattering. A detailed theory would be very complicated, but Massey

and Mohrf have carried the analysis far enough to render the explana-

tion a plausible one for effects of this kind, observed for electrons with

energies of 100 e.V. or more, scattered in helium and hydrogen.

Let us consider for simplicity the scattering of electrons by hydrogen

atoms. Referring to Chap. VII, § 1, we see that the function

describing the elastic scattering, satisfies the equation

(V^+P)i’o{r,) =^2 (26)

n

where Fo„ = «*
J

(2^)

It was shown also that, within the accuracy of Bom’s approximation,

i?; =:
J
—^^expliZjlri-rsl+tino.rgjl^oW (28)

J
pjr^exp{iZ;„|ri-r3 (29)

To obtain a second approximation to 1], we substitute (28) and (29) on

the right-hand side of (26) to give

{V2+P)i;i =

In order to sum the series involved we now restrict ourselves to such

velocities of impact that Jc^ k for all values of n which contribute

appreciably. We may then use the result

JUri)Ur3) = /
nr2.r3)F(r3,r,)!^o(^3)|2iT3, (31)

where

This gives (32)

where

^00 ^2JJ exp{i^(P3+no. p3)}F(p2+ri, ri)F(p2+ri, ps+r^ X

X lfAo(P2"l"*‘l)lV3 ^<^P2^P8*

In obtaining this form for the origin of coordinates has been changed

t Proc, Ray. Sac. A, 146 (1934), 880.
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to the point 1, the position vectors of the points 2 and 3 relative to this

origin being denoted by pg pg.

From the form of (32) it is clear that represents an extra scattering

potential which must be added to the static potential of the atom. As

it stands it includes, not only the effect of the inelastically scattered

waves, but also the second approximation to the solution of the equation

(V^+F)^i = ^Fo„/;. (34)

The true polarization potential will be obtained by subtracting this

contribution, which we call Uqq, from It may easily be shown that

Moo = —^^0 J
^M(ip3+r,|)/3^iexp{iA;(p3+no. Pa)} (35)

It is clear that —
^>oo~^oo ^ very complicated function of

and k. Massey and Mohrf calculated the zero and first-order terms in

the harmonic expansion of and found good convergence in the

separate, still very complicated, contributions from these two. For

large values of r they showed that

€^0^0 l— ScosffL
t - Uo/Ml

2k yi+
r*/c ( (l-|-^%§)®j \r®/

(36)

The second term is of the nature of a dynamic polarization, but the first,

which is purely imaginary, corresponds to an absorption potential. It

may, perhaps, be interpreted as due to the loss of electrons from the

incident beam by inelastic scattering. In any case it has a very marked

effect on the small angle scattering as it falls off so slowly with distance.

It leads to a differential cross-section which tends logarithmically to

infinity at very small angles. Fig. 36 illustrates the comparison of the

observed angular distributions for electrons with energies between 75

and 350 e.V. scattered by helium, with the theoretical ones obtained

from the formula

m = ^\j dr (37)

The comparison has been effected by adjusting the ordinates of experi-

mental and theoretical curves to agree at 60° for 350 e.V. electrons. It

will be seen that the agreement is quite good and very much better at

small angles than when Vp is ignored. The vaUdity of the theory has

been confirmed to even smaller angles (to 2°) in hehum. Thus Whidding-

tonj finds that, between 6° and 2° in hehum, the scattered intensity for

t Lioc. cit. t Nature, 133 (1934), 686.
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200 volt electrons doubles. According to Born’s first approximation

there should be little change between these angles, but the effect of

is to produce very nearly the observed increase.

Fig. 36. Comparison of observed and calculated angular distributions for scattering of

electrons by helium atoms.

Calculated by Bom’s approximation.

Calculated taking polarization and distortion into account.

• Experimental points (Hughes, McMillen, and Webb).

Similar agreement is found for hydrogen, assuming that the molecule

behaves like two atoms. The ratio of the polarization amplitude to that

given by Born’s first approximation is a function of Zjh, where Z is the

effective nuclear change. As a result the effect should be apparent at

higher energies in helium than in hydrogen, and this is observed.

Unfortunately it has not proved possible to extend the theory to

cover lower energy impacts, but it is probable that the polarization

effect is important at small angles down to very low energies.
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INELASTIC COLLISIONS OF ELECTRONS WITH ATOMS

We limit ourselves in this chapter, except where otherwise stated, to

the case of fast electrons {v ^ e^jh); the first Born approximation is

then sufficient. This introduces sufficient simplification to enable the

calculation of the stopping-power of any material, the probability of

ionization of an inner level of an atom, etc., to be carried out with

sufficient accuracy to make possible a comparison with experiment. We
shall first consider in some detail the case of inelastic collisions with

hydrogen and helium atoms. It will then be found possible to generalize

the results obtained for these simple cases to more complicated atoms,

1. General formulae

Consider the collision of an electron with an atom in which the atom

is raised from the state m to state n by the impact. If are the

energies of the two atomic states and the initial and final velo-

cities of the colliding electron, we have

(
1
)

It was shown in Chapter VIII that, within the range of validity of the

first approximation of Born’s theory, the differential cross-section

corresponding to the collision is given by

4an(^)

=^^\jj F(r,R)exp{i(i„„n,-i:n„).R}^*(r)^^(r) drdKtdu.,

(
2
)

where Mno/27r, hnJ27T are the initial and final momentum vectors

of the colliding electron, and are the initial and final atomic

wave functions of the atom. The interaction energy V is the Coulomb

interaction between the incident and atomic electrons, e2/|r-~R|.f

We note that the probability of a transition from one state to another

of a different term system (such as a singlet-triplet transition in helium)

is zero to this approximation, since the perturbing potential F is sym-

metrical in the coordinates of the atomic electrons, whereas the wave

functions will have different symmetry properties. The integral

in (2) will therefore vanish. This result is in agreement with experi-

f The effect of the Coulomb interaction between the incident electron and the atomic

nucleus vanishes on account of the orthogonal properties of the atomic wave fxmctions.
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ment for fast collisions, but not for slow collisions. The discrepancy

is due to neglect of electron exchange, as is explained in § 5 of this

chapter.

If the colliding electron ionizes the atom, the state n will lie in the

continuous spectrum. We distinguish a level ofthe continuous spectrum

by a quantity k related to the energy of the level by the formula

(3)

The normalization of continuous wave functions is discussed in Chap.

XIV, § 2.1. We normalize in such a way that the differential cross-

section given by (2), multiplied by d#c, corresponds to a range of energy

such that K lies between k and /c+d/c; we must thus have

JWr)Mr)dr = 8(K-0. (4)

The differential cross-section corresponding to the excitation of a set of

continuous energy-levels lying between k and K+dK is then given by

dK. (5)
Jf

^ *Am drdR

1.1. Introdwtion of momentum variables

For most purposes it is convenient to change from angular to momen-
tum variables. The vector

n^-kno)hl27T

is the change of momentum of the incident electron. If we choose the

axis of a system of polar coordinates along this vector, we havef

exp{i(*mn ni-Ano) . R} = exp(iXZ), (6)

where rr ,7 ? ,K — AiIqI

= (*5,,+fc2-2fci„,,C08^)*. (7)

The scalar K denotes the magnitude of the momentum change when

an electron is scattered through an angle d. Since

K dK == sin d dd,

we have, for the cross-section for momentum change between K and

K+dK,
Svhn^ K dKIUK)dK =
A* JJ

drdR
(
8
)

t Compare Chap. VII, § 1. We write X in place of ^ to avoid confusion with the

elective nuclear charge Z,

MM.67 Q
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This expression for may be simplified by performing the integra-

tion over the coordinates of the colliding electron. Let the Z atomic

electrons be denoted by suffixes 1, 2,..., Z, Then

dR = €*

ZJi
Making use of the formulaf

exp(iZn.r') , , _ in ,

Ir-r'l
’

we have

f exp(iKn

J |r-r'

J
dR 2

Substituting in (8), we then obtain finally

dK = — |e„„(

where
8<=bX •'

The effective cross-section corresponding to the mn transition will be

obtained by integrating the differential cross-section (10) between the

limits of allowed momentum change, i.e.

A.max

QmJJc)= J Imn(K)dK.

In view of their importance in the following sections we will examine

these limits for the particular case of fast electrons. It is easily seen that

^max ~

•^mln
~ ^ ^mn»

and that, as a consequence of the energetic relation (1),

For the case of fast collisions we have, then,

and so

*+*m« - 2^

*-*m» inhn{E^-E^)l¥k. (13)

t Bethe, Ann. der Phya. 5 (1930), 326.
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2. Calculation of differential cross-sections for hydrogen and
helium. Angular distributions of inelastically scattered

electrons

2.1. Excitation of discrete levels

To calculate the differential cross-section dK we require the

wave functions of the states m, n. In all cases we suppose the initial

level to be the ground state, for which we use the suffix 0. Also we
write for The wave functions for the ground states! are

^0 ~ (7Ta%)~^e~^^^ for hydrogen,

== for helium, with Z — 1-69. (14)

For the higher states of hydrogen-like atoms the wave functions

take the formj

wtt'
^

’ ll+m)\Un+l)\f \noo/

^(Z— Z— 1 )!

(l+ni)\{{n+l)\f

J^\2/+3

^nlm

(15)

where Z is the nuclear charge; for helium it is necessary to make certain

approximations, as in the case of the ground state. It has been shown

by Eckart§ that a good approximation to the wave function of an

excited state of helium (other than an S state) is obtained by taking

a symmetrical combination of the product of two wave functions, one

representing the ground state of an electron in the field of a charge 2,

the other the excited state of an electron in the field of a charge l.H

Hence, if we write

for the wave function of a single electron in the nlm state in the field

of a charge Ze, we may take, as a sufficiently good approximation for

the wave function of an excited singlet state of helium, the form

the two electrons being distinguished by the numerals 1, 2.

On substitution of the wave functions (16), (15), and (14) in the

expression (10) for the differential cross-section, we see that

.^{K) ==ajUZ\r'HUZ'\ry^'dr’,

t Cf. Chap. IX, § 3.

j Sommerfeld, Introduction to Wave Mechanics^ p. 69.

$ Phya, Rev, 36 (1930), 878.

II
For S states a more complicated wave function must be used. See Massey and

Mohr, Proc. Roy. Soc, A, 140 (1933), 613.
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where
« = 1, Z = Z' — I for hydrogen,

a = 2*, Z = 1-69, Z’ = I for helium.

The value of this integral may be calculated! for all nlm, and we

find that

e„4Z) = 22'+3^W(2Z+1)*^‘{^+1)!{(»-^-1)!}*{(«+0!}‘*Wx

-2/iZ{(wZ-1)3+4C=‘P{M+1)*+4C3}‘<7{,+4_2{^)+

+(nZ-l){(«Z+l)3+4^3}C7i+4_3(x)], (17)

where
a; = (n3Z3-l+4C3)[{(?iZ+l)3+4^*}{(wZ-l)3+4C3}]-*,

I = (18)

The coefficients Cj are defined in terms of the expansion

(1— 2«<+u2)-v = 2 C%t)u\
«»>0

The expressions for these coeflScients for 5 = 0, 1, 2, 3 are

Cl{x) = 1
, Cl{x) = 2vx, Cl{x) == v{{2v-^l)x^-l},

C5(a:)=: v{2(v+l)x2-l}. (19)

In order to examine the general features of the formulae we will

consider the 2 and 3 quantum levels only. In Fig. 37 the angular dis-

tributions of electrons of 200 e.V. incident energy scattered after

exciting various quantum levels of helium are shown. For purposes

of comparison the distributions corresponding to elastic scattering are

given. It is clear from these figures that:

() The excitation of the optically allowed levels takes place with

much greater probability than that of the optically disallowed.

() The probability falls off very rapidly with increase in the angle

of scattering. At small angles the excitation of the 2^P level takes

place with greater probability than an elastic collision, but the reverse

is the case at large angles.

(c) The inelastic scattering is negligible when

Ka^ > Z.

The reason for this is clearly seen by reference to the formulae (17),

(18), (19), which show that, when Ka^ > Z, the excitation probability

t Massey and Mohr, Proc. Roy, Soc, A, 132 (1931), 605.
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falls off as for 8, P, D states respectively. Since Z€^l2aQ

is the ionization potential of the atom, we may say that the differential

cross-section is negligible when

K > Vj€\

Fig. 37. Angular distribution of electrons of 200 e.V. incident energy

scattered by helium atoms after exciting various levels.

K* is given also for the 2'P transition, in atomic units.

Vi being the ionization potential of the atom concerned. This result

may be generalized immediately for any atom.

In Table I the values of 2171^^8) are given, for various velocities of

impact and angles of scattering, for a number of inelastic collisions in

helium. It is unlikely, on theoretical grounds, that the formulae ob-

tained by the use of the first approximation of Bom’s theory can be
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TABLE I

Gross-section
(
27r/(0

))
in Units of Tral

Angle of Scattering

State excited O'^ 5° 10° 20° oO 0O*^

100 volts 0-99 0*98 0*92 0*79 0*61 0*45

PS 200 „ 0-99 0*97 0*88 0*65 0*41 0*25

400 „ 0-99 0*95 0*77 0*45 0*22 0*10

100 volts 0126 0*120 0*086 0*049 0*020 0*0063

2^S 200 „ 01 55 0*126 0*086 0*024 0*0039 0*068
3

400 „ 0*166 0*120 0057 0*0051 0*086
3

0*03
4

100 volts 7*8 4*4 1*78 0-32 0*056 0013
2*P 200 „ 17*7 4*6 0*99 0*068 0-0088 0*07

400 „ 39 2*6 0*33 0*009 0*0003 0*02
s

100 volts 1*84 1*20 0*45 0*103 0*021 0*0043
3ip 200 „ 4-6 1*33 0*24 0*027 0*0025 0*028

8

400 „ 9*7 0*81 0*084 0*0035 0*014
3

0*08
0

100 v^olts 00109 00098 0*0070 0*0028 0*07
s

0*014
8

3'D 200 „ 0*0132 0*010 0*0052 0*086
s

0*08
4

0*07
5

400 „ 00142 0*0094 0*0023 0*011
s

0*03
6

0*01
6

100 volts 0*68 0*46 0*215 0*043 0*0092 0*0020

PP 200 „ 1*71 0*52 0*131 0*011 0*0012 0*013
a

400 „ 3*7 0*33 0*048 0*0015 0*06
4

0*04
6

regarded as very accurate, even for impacts of 200 volt electrons; but

comparison with the available experimental material shows that good

general agreement is obtained.

f

Experiments in helium have been carried out by Dymond and WatsonJ:

using 200 volt electrons, by McMillen§ using 100 volt electrons, and by
Mohr and Nicoll|| using 54, 83, 120, and 196 volt electrons. The observed

angular distributions of electrons which have excited the 2P level agree

well with the theoretical, as may be seen by reference to Fig. 38, in which

the comparison is made. For the collisions ofthe lower velocity electrons

(less than 80 volts) the agreement is not good at large angles of scattering,

but this failure is to be expected (cf. § 5.2). Comparison of theoreticalff

t For a detailed discussion see Massey and Burhop, Electronic and Ionic Impact
Phenomena, Chap. III.

J Proc. Roy. Soc. A, 122 (1929), 671. § Phya. Rev. 36 (1930), 1034.

II
Proc. Roy. Soc. A, 138 (1932), 229.

tt Detailed calciilations for atomic hydrogen have been carried out by Elsasser (Zeita,

f. Phyaik, 45 (1926), 522), Bethe (Ann. der Phya, 5 (1930), 325), and Goldstein (Thiaea,

Paris (1932)).
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and observedf results for electrons scattered inelastically in hydrogen

reveals the same behaviour. (The theory refers to atomic hydrogen,

the experiments to the molecule, but at the velocities concerned little

difference in behaviour of the two is to be expected.)

The observed relative magnitudes of the inelastic and elastic scatter-

ing probabilities also agree quite well with the calculated values. It has

Fig. 38. Angular distributions of electrons scattered inelastically by helium atoms.

not yet proved possible to observe electrons which have excited optically

forbidden transitions in helium or hydrogen, which shows that the

intensity of such excitation is small. Experiments conducted by Whid-
dington and Roberts^ and by van Atta,§ in which only non-deviated

electrons were examined, exhibit this result very clearly. In Fig. 39 an
experimental velocity distribution curve of non-deviated electrons of

200 volts incident velocity through helium is illustrated. Electrons

which have excited the 2^P, 3^P, and 4^P levels can be distinguished

clearly, but no other inelastically scattered electrons (except those

which have made ionizing collisions) can be detected. The relative

intensities of excitation of the various P levels is also in good agree-

t Hamwell, Phys, Rev, 34 (1929), 661; Hughes and McMillen, ibid. 41 (1932), 39;

Mohr and NicoU, Proc, Roy. Soc. A, 138 (1932), 469.

t Proc. Leeds Phil. Soc. 2 (1931), 201.

§ Phys. Rev. 38 (1931), 876.
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ment with theory. In van Atta’s measurements only electrons scattered

between angles of 0® and 1° 40' were collected, and the observed varia-

tion of intensity with velocity of electrons which have excited the 2^P

level is in agreement with that given in Table I, a steady increase of

intensity with velocity being observed.

Fig. 39. Velocity analysis ofnon-deviated electrons of 120 volts incident energy scattered

by helium atoms.

We find, then, a close agreement between theory and experiment

when this is to be expected. Further comparison with experiment will

be discussed in § 3 in connexion with the calculation of total cross-

sections. We must now consider the calculation of the differential

cross-sections corresponding to the excitation of levels in the continuous

spectrum (i.e. to ionization of the atom).

2.2. Excitation of cmtiniums levels. Ionization

In any experiment in which ionizing collisions are investigated it is

impossible to distinguish between scattered and ejected electrons. If

electrons having a definite energy E' are measured after the collision,

these will be composed, not only of electrons scattered after losing
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energy E—E\ but also of electrons ejected from the atom with energy

E\ E being the energy of the incident electron. In order to compare

the results of experiment with observation it is, in general, necessary to

allow for the interference of the two sets of electron waves,t but under

certain conditions this interference may be small and we may apply an

approximate theory which does not take account of the interference.

For the calculation ofthe probability ofionization by electrons ofa given

velocity, the inclusion of interference effects does not alter the result, so

we will simply develop the theory without taking such effects into

account. We will see later the conditions under which the interference

may be neglected in discussing angular and velocity distributions of

the electrons.

The wave function corresponding to a state k of the continuous

spectrum in which the electron is moving in the direction with polar

angles (x, 0) in the field of a charge Ze is given byj

)*« j"

0

^ = r(l+ cos0),

COS0 = cos0cosx+sin08inxcos(<^-“^),

and n = ZjKa^.

For hydrogen we take Z = 1 in (20); it is difficult to obtain a satis-

factory wave function for helium. A rough approximation is to take

the wave function of the excited electron as hydrogenic in form and

corresponding to a nuclear charge 1*69 (the effective nuclear charge of

the ground state). This function has the merit of being orthogonal

to the ground state wave function: in any case the error made will

probably not be great for the high velocities of impact for which Born’s

first approximation is valid.

Using these wave functions in the formula (10), we find for the

differential cross-section corresponding to ejection of the atomic elec-

tron with energy E^ in the direction (x>^) relative to the direction of

incidence of the exciting electron, into the cone of solid angle do, the

incident electron being scattered in the direction [6, <f>)
into the cone of

t Cf. Chap. VIII, § 4.3.

X Sommerfeld, Ann. der Physik^ 11 (1931), 267. The normalization is such that

represents an outgoing plane wave together with an outgoing spherical wave. (Cf.

Chap. XIV, § 2.1.)

where
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solid angle do), the expressionf

T exp[-(2/x//c)arctan{2/i/f/(/t®+^®-/c*)}]^,

* TragjfcZ* (l-e-2’'#‘/'^)(^2+J(r2+ic2-2ZKC08S)4
^

X {(i:-K cos S)2+/i2J/{(^i!^^2_^2)2+ 4^2^2
} dadudK, (21)

where 8 is the angle between the vector (the change of

momentum of the incident electron) and the direction (x)0)>

AngU of Scattering

Fig. 40. Angular distributions of scattered and ejected electrons corresponding to

electrons of 200 volts incident energy.

We note that the expression (21) is a maximum when 8 = 0, corre-

sponding to the conservation ofmomentum in the collision between the

incident and atomic electrons. To obtain the angular distribution of

the ejected electrons it is necessary to integrate (21) over all angles of

scattering of the colliding electron. This can only be done numerically.

Two typical angular distributions are illustrated in Fig, 40. The maxima
are given by the condition

— 2fciccosx = k^

which corresponds to the conservation of momentum.

t Massey and Mohr, Proc. Roy, Soc. A, 140 (1933), 613.
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The integration over all angles of ejection may be carried out ana-

lytically; we obtain

IJfi, <j>) dcodK
aycK^

Xexp - arctan -e-2’fW«)-i dudK. (22)

In Fig. 40 two angular distributions ofscattered electrons are illustrated,

I 2 3 4

K=(k^+K ®-2k.K cos e)^

Fio. 41. Angular distribution of electrons scattered after ionizing a helium atom.

Incident electron Ejected electron

A k ~~ 4*7 (300 volts) k = 0-5 (2-5 volts)

B k = i-1 (3(X) volts) K ~~ 2*0 (55 volts)

C k= 5-9 (472 volts) k = 3-0 (122 volts)

D A: 4*7 (300 volts) #c = 1-0 (14 volts)

calculated from this formula, while in Fig. 41 a number of curves are

given in terms of the change of momentum K as variable. From these

curves we note:

() For small velocities of ejection of the atomic electron the angular

distribution of the scattered electron falls off uniformly with angle, just

as for the discrete excitations.

() For higher velocities of ejection of the atomic electron the angular

distribution has a sharp maximum at the point where

= /c2, (23)
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corresponding to the conservation ofmomentum in the collision between

the atomic and incident electron.

(c) The probability falls off rapidly for large values of K.

2.21. Velocity distribution of ejected electrons

The velocity distribution of the ejected electrons will be obtained by

integrating the expression (22) over all angles of scattering. This may

Fig. 42. Velocity distribution of ejected electrons resulting from ionizing collisions with

hydrogen atoms.

Numbers denote voltage of incident electrons.

be carried out numerically. In Fig. 42 a number of velocity distribu-

tions are illustrated. For ionization by electrons of incident energies

greater than 100 volts the probability of ejection rises rapidly to a

maximum for low velocities of ejection and falls off quite rapidly with

increasing velocity.

As a consequence of the strong asymmetry of the velocity distribution

curve for the ejected electrons, we see that interference should only

become important for electrons of intermediate velocity. The general

form of the resultant distribution is as shown in the inset of Fig. 42 by
the dotted line. The observations of Tate and Palmerf provide a

qualitative confirmation of this result.

We are now in a position to examine the conditions under which

t Phya, Rev, 40 (1932). 731.
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interference may be neglected in discussing the angular distributions.

From Fig. 42 it appears that the electrons with low energy should have

angular distributions comparable with that calculated from (21) for the

ejected electrons, while those with high energy should have angular

distributions of the form given by (22) for the scattered electrons.

Electrons of intermediate velocity should have angular distributions

showing marked interference effects. There is little experimental evi-

dence on this subject,! but Tate and Palmer (loc. cit.) have shown that

in mercury vapour the angular distribution of the faster electrons

resulting from an ionizing collision (the ‘scattered’ electrons) is very

similar to that of electrons resulting from the excitation of discrete

levels, i.e. falling off very rapidly with angle of scattering. This is in

agreement with the calculated form of curve illustrated in Fig. 40. For

the group of slow electrons they find a comparatively small variation

of intensity with angle; this would be expected from the form of the

curves in Fig. 40 for the ejected electrons when allowance is made for

the fact that in the experiments the collected electrons were not homo-

geneous, but had a voltage range of 30 volts, which would smooth

out any maxima which might have appeared. No definite experimental

evidence as to interference effects has yet been obtained.

2.3. Angular distribution of the aggregate of inelastically scattered

electrons

2.31. Hydrogen atoms. Formula (10) gives us the differential cross-

section corresponding to a given final state n. If the hydrogen atom is

initially in the ground state, we have, summing over all possible states,

j /„(ir)« = 2j /
(2‘)

Now, if we expand in a series of atomic wave functions, we obtain

f dr.
n ^

Multiplying this equation by its conjugate gives

n

Integrating both sides of this equation over aU space, we obtain, by

virtue of the orthogonal properties of the wave functions

1 =
I f

*+ 2 I f
I j ny^Oi •'

t For a detailed account see Massey and Burhop, Electronic and Ionic Impact
Phenomena, Chap. III.
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Substituting in (24) then gives

J,IJ^K)dK = 1287r%*€‘ dK
(25)

where F is the atomic scattering factor [see Chap. VII, § 1, eq. (9)] for

the hydrogen atom, given by

F{K) = j
e^^^\iPo\^dr

The condition of validity of this formula is that no appreciable con-

tribution to the sum (24) arises from transitions 0 -> ti which are not

energetically possible. For this to be so, K must be greater than the

minimum momentum change for a transition to the highest state with

appreciable excitation probability; i.e. if is the energy of this state,

we must have, using the expression (13) for

K >
The excitation probability falls off rapidly with increasing E^ and can

certainly be taken as small when

> -4Ao.

The condition of validity of the formula (25) is then roughly that

K > 20'7r2m|£o|/W.

If the energy E of the incident electron is great compared with the

excitation energy of the state of the atom excited, we have

= (2l:2-;\2)(l-co80)+ i^cos0+...,

where ^ = ^~(E„—Eo).

For all angles 6 which satisfy

i.e. (26)

we have, therefore, K = 2ksm\d, k^^k. (27)

This result is independent of n and may be used provided E > E^—E^,

i.e. for small angle collisions (see Fig. 40). For large angle collisions

we make use of the fact that the momentum of the secondary electron

ejected is approximately equal to AA/277
, so the energy lost by the

incident electron is

E^—Eq
8nhn

A*

8»r*TO
(P4-AJ— 2kk^ cos &).
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E^-E, =

SO iT = A;sin0, == kcos0, (28)

These formulae are identical with (27) when 6 is small, and so we may
use (28) for all 6 satisfying (26).

As (28) shows that K and are independent of the excitation energy,

we may immediately convert the sum (25) for a fixed momentum change

to a sum at a fixed angle of scattering by using the relation

K dK = kk^ sin 6 dO

in connexion with (28). This gives

O ^ T /a\ • Q 1287r®mM cos 01", 1 1
277 y /o»,(0)sin 6 dd =— r~-~ \

1 — 7 dO
r ^ sin30[ (l+ lk^alsinW)^]

which is to be compared with formula (9) of Chapter IX for the elastic

scattering

o r/m • 1287r5mMag(8+4Pagsin40)2 .

2,/(9)sm 6 de _ ^ 9 M.

For small angles of scattering [but still satisfying (26)] we have

lUe)

Hence the inelastic scattering at small angles considerably exceeds the

elastic.

At large angles

2^ I Ion{e) = cosec^e, (30)

which is the Rutherford formula for scattering ofone electron by another.

We must correct this formula to include the interference of the scattered

and ejected electrons. Using the formula (26) of Chapter V when e^jhv is

small we obtain

277 2 6 dO = - sin 6 cos 0(co8ec^0— cosec^^ sec^^-fsec^^)
n iC tl

4—3 sin220 _ v

This is to be compared with the corresponding formula for the elastic

scattering
IOttOotV cosi^ „

27rl(0)sm ddd'^—riri (32)' ' h*k*‘ 8m®i0
' '

From formulae (29) and (31) we see that inelastic scattering pre-
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dominates near 0® and 90® but may become smaller than the elastic

at intermediate angles.

2.32. Oenercdization for complex atoms, Morsef has shown that, if 8

satisfies (26), the total differential cross-section for all inelastic collisions

of fast electrons with an atom of nuclear charge Ze is given by

where
iWsin^p

/S(i8inP), (33)

S = l-ZF^-\-
r

^

^z) wave function of the ground state of the atom and F
is the atom form factor defined in Chap. VII, § 1. HeisenbergJ has given

a method of calculating S if the Thomas-Fermi statistical atom model

is used. He finds that

(
35

)

0

where v = pK^ttZ)^, <f>,
x, and fx are as defined in Chap. IX, § 4.1 and

Bewilogua§ has calculated S numerically from the formula (35) and

his results are given in Table II.

TABLE II

Differential Cross-sections Ii^{d) for Total Inelastic Scattering of Fast

Electrons by Atoms y
calculated using the Thomas-Fermi field

V -y/(volt8)8in

4z»/»/^(e)

in units of oj

005 0-278 0-319 9,920

01 0-556 0-486 942
0-2 1-112 0-674 81-7

0-3 1-668 0-776 18-6

0-4 2-224 0-839 6-35

0*5 2-781 0-880 2-72

0'6 3-337 0-909 1-36

07 3-893 0-929 0-75

0-8 4-449 0-944 0-45

0*9 5005 0-954 0-28

10 5-561 0-963 0-19

At small angles the inelastic scattering considerably exceeds the elastic but falls below
it at larger angles.

t Phya. Zeit.33 (1932), 443. t Ibid.32 (1931), 737. § Ibid., p. 740.
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3. Total collision cross-sections

3.1. Excitation of discrete optical levels

The total cross-section corresponding to the excitation of the nth
quantum state of a given atom from the ground state is given by

J
dK.

The limits of integration have been given in equations (13). In order

to evaluate this integral approximately, we observe (cf. Fig. 37 and
Table I) that /on(^) becomes very small for such values of K that

> Kl (38)

where Kl =
When this condition is not satisfied we may expand I^J^K) in powers

of K. We have, from equation (10),

IUK)dK = 1287r®m*e^ dK
¥h* IS" J

2

Idr .

Expanding the exponential, we obtain

UK) dK = ^7^' ~{K^\Xon?+m[x'^),S+.:l (39)

where ^be matrix elements of a:, so that

(^)orv = /
dr.

The expansion (39) is valid provided the condition (38) is not satisfied.

When (38) is satisfied, ^ very small and may be neglected. We
may then write

Qon ^
1287r^mM

J
{K-^\x,^\^+lK\{x%^\'^+...}dK.

For a transition which is optically allowed the first term will not vanish

and will be much the largest for fast electrons. Integrating, since \E^\

is rather less than \Eq\ and using the expression (13) for K^^^y we

/O 647r®mV, ,,, 2mv^
Qon ^ rsTT— |a:o„|*log^; p . (40)

If the transition considered is associated with a quadrupole moment
but no dipole moment, we obtain similarly

Qon ^ \{x^)onmo\

Sft96.67 B
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We notice, then, that owing to the logarithmic term, the cross-sections

corresponding to the excitation of optically allowed levels should fall

off more slowly with increasing velocity of impact than those corre-

sponding to optically forbidden transitions. Experimental evidence on

this point is very meagre. Some evidence is obtained from the measure-

ment of the excitation functions of various spectral lines. This method

has been mentioned in Chapter IX. However, the resiilts of the most

recent experiments carried out by Leesf and by ThiemeJ in helium do

not indicate any noticeable differences in behaviour between S, P, and

D levels with regard to variation of excitation probability with velocity

at high velocities.

A further consequence of the formula (40) is that, as the velocity of

impact increases, a greater proportion of the collisions are inelastic, since

the cross-section for elastic scattering decreases as v~^ for high velocities

[see Chap. IX, (10)]. This effect is clearly shown in Table V of this

chapter.

In Table III a number of values of excitation cross-sections for

TABLE III

Cross-sections in units of nal

Electron

energy

in volts

State excited

Elastic 2hS 2ip 3ip 4^P 4W 4^F b^P Sum
06-

served

100 0*375 0*0084 0*107 0 031 0*053 0*012 0*027 0*040 0 0063
3 3 5

0*538 0*67

200 0*205 0*0047 0*069 0*021 0*028 0*009 0*015 0*020 0*0046
3 3 5

0*313 0*31

400 0*107 0*0025 0*047 0*013 0*025 0*006 0*08 0*010 0*0034
3 4 5

0*178 “

helium calculated by use of the exact expression (18) are given with

the elastic cross-section for comparison. The observed values given

for the sum of the elastic and discrete excitation cross-sections are

obtained by subtracting the observed ionization probabilities (com-

pared with those calculated in § 3.3) measured by Smith, § from the total

cross-sections measured by Normand.|| The agreement at 200 volts is

very satisfactory, but it appears that Born’s approximation begins to

fail for electrons with energies less than about 150 volts.

The comparison of relative values for the different transitions with

the values obtained from optical experiments is discussed in § 5.2 in

connexion with the excitation of triplet levels.

t Proc. Roy. Soc. A, 137 (1932), 173.

§ Phys. Rev. 36 (1930), 1293.
t Zeits.f. Phyaik, 78 (1932), 412.

11
Ibid. 36 (1930), 1217.
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3.2. Excitation of X-rays

In collisions with complex atoms an electron may be ejected from

an inner shell, with subsequent X-ray emission. It is thus of con-

siderable interest to obtain approximate expressions for the probability

of such inner-shell ionization. We require to sum the probabilities of

all the possible transitions from the inner shell concerned.

For ionization of the nl level we require, then,

nl'

1287r®mM dK
2 I ^7a,nr{^) 1

« '7'

(42)

The total cross-section corresponding to this ionization, which we denote

by Q\i, is then given by
Kmax

Qii = l /
Ira.nr{K)dK, (43)

n I

^min

and we may approximate to the value of this integral in the same way
as in the preceding section for optical levels. In this way we find

Qhl (44)

where is of the order of the energy of ionization of the nl shell and

is one-third of the mean square radius of the nl shell. For outer

shells the terms V l^nz.nrl^ ^re small, and the probability of ionization

of the shell is nearly proportional to the mean square radius of the shell,

but for inner shells the intensity of forbidden transitions becomes

important. Bethef has carried out further approximations by assuming

the atomic wave functions to be of hydrogen-like form with effective

nuclear charge With this assumption he finds, for those inner shells

from which the most important discrete transitions are forbidden,

I \^ra.n7? = 0-2-0-67l%?/Z2a. (45)
nl'

As the energy E.^i of the nl shell is

E^i = -~27r^m€^Zl^lnVi^,

we have iinaUy QU = l=^6.,log(^), (46)

where 6,,^ is between 0-2 and 0*6 for inner shells, and of the order

for outer shells.

Detailed calculations have been carried out by BurhopJ for the

ionization of the K and L shells of nickel, silver, and mercury by
electrons with energies up to 15 times the ionization energy. Born’s

I Ann. der Phys. 5 (1930), 325. J Proc. Camb. Phil. Soc. 36 (1940), 43.
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approximation was used throughout with the same effective nuclear

charge taken for both the continuous and initial state wave function.

If the contribution to due to transitions to unoccupied discrete

levels can be neglected, the best values to take for b^i and in (46)

may be obtained. It is found then that 0*35 for the K and 0*25

for the Ljy Ljj, and shells and that = 1*65^7^ approximately

for all four cases.

The formula (46) is only valid for electron energies several times the

ionization energy Burhop’s calculations give the results of Born’s

approximation down to the lowest effective energies. Comparison of his

results with the observations of Clarkf and of Webster, Hansen, and

DuveneckJ for ionization of the K shell of silver, of Smick and Kirk-

patrick§ and of Pockman, Webster, Kirkpatrick, and Haworthy for the

K shell of nickel, and, less definitely, with those of Webster, Pockman,

and Kirkpatrick|f for the L shells of gold, reveal the same general dis-

crepancies. The absolute values of the cross-section for electrons with

energy ranging from E^i to at which the cross-section is a maximum,
agree very well, but at higher electron energies the observed values fall off

less rapidly than the calculated. This is somewhat surprising as it is for

these energies that Born’s approximation would be expected to be most

accurate. It may be that the scale of the observed absolute values is not

accurate, so that there really is agreement at high energies and disagree-

ment at smaller where the theoretical values would exceed the observed.

This would be consistent with the nature of the failure of Born’s approxi-

mation when applied to optical excitation (see §§3.1, 5) and outer-shell

ionization (§3.32). On the other hand, the inclusion of relativistic

effects will tend to increase the theoretical values at higher energies

(see Chap. XV, § 2) and this may be sufficient to remove a large part of

the discrepancy.

3.3. Primary ionization

Using the differential cross-sections 1^^ dKdK given in § 2.2 for the

excitation of a level of the continuous spectrum, we may calculate (by

numerical integration) the total cross-section Qq for ionization, using

the formula ac ^''max

0^0=
f / UK) dKdK, (47)

0 S'min

where

t Phys. Bev. 48 (1936), 30.

§ Ibid. 67 (1946), 163. H Ibid. 71 (1947), 330.
t Ibid. 43 (1933), 861.

ft Ibid. 44 (1933), 130.
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The results of such a calculation are illustrated in Figs. 43 and 44 for

the ionization cross-sections of hydrogen and helium.

The comparison between experimental curves and those calculated

is also shown. The most recent experimental measurements have been

carried out by P. Smith and Tatef for (molecular) hydrogen and by
P. SmithJ for helium. For purposes of comparison it is assumed that

the molecule behaves like two atoms.

Fia. 43. Ionization probabilities in hydrogen.

The agreement is quite satisfactory when one takes into account the

facts that the magnitudes of the cross-sections are compared as well as

the variation with velocity, and that it is difficult to obtain approxi-

mately correct wave functions to represent ionized states of atoms other

than hydrogen. For electrons with energies less than 200 e.V. the

theoretical cross-sections are too large, but the disagreement at these

low energies of impact is not surprising and will be discussed further

in § 5.2. It may be pointed out that the simple theory again predicts

too rapid a rise of the probability as the incident energy is increased

above the ionization potential, just as for X-ray and optical excitation.

3.31. Ionization probability for high-velocity impacts,

%

Owing to the

t Ibid. 39 (1932), 270. t Ibid. 36 (1930), 1293.

§ By high velocity is understood a velocity greater than 1,000 e.V. but not such a
velocity that relativistic effects are important.
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laborious nature of the calculations for the higher voltage impacts

carried out as above, it is important to obtain an approximate formula

to cover these cases. In Fig. 42 of this chapter, curves are given which

illustrate the dependence of the integral

Xmax

J
UK)dK (48)

on K for various velocities of incidence.

Fio. 44. Ionization probabilities in helium.

Referring to this figure, we 3ee that the main contribution to the

probability of ionization comes from transitions involving quite small

values of k. For such transitions 1q^{K) is of the form illustrated in

Fig. 41; thus for large values ofK it is vanishingly small, just as in the

case of the excitation of discrete states. The concentration of the

scattered electrons about the angle corresponding to the conservation

of momentum occurs only for transitions associated with large values

of K. As a consequence we may approximate to the value of in

much the same way as for the excitation of discrete states. Using this

method, we find

QU = J (
49

)

where Cm is a quantity of the order of the energy of the shell. Em-
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ploying methods similar to those used in considering the excitation of

X-rays it was shown by Bethef that (49) reduces to

where

Qni —

-

\Enl\

^nl

mv^
^njlog

(^ra = / \^ra.K?dx-

(50)

Using again the approximation of hydrogen-hke wave functions, the

following are the values of for the various shells.

TABLE IV

Shell la 28 2p 3« 3p Sd 48 4p 4d 4/

^nl
0*28 0-21 013 017 0-14 007 0-15 0 13 0-09 0-04

These figures show that shells with the highest azimuthal quantum

numbers are the most difficult to ionize.

For hydrogen in particular, for which exact calculation may be

carried out, J we have for the cross-section for ionization

Q\ = 0-285
2tT€^

\Eo\m,v^

2mv^

0-048 1^0 i

) (51)

showing that is about one-tenth of the energy of ionization of the

nl shell.

3.32. Comparison with classical theory and with eocperiment. The

classical formula of J. J. Thomson§ is of a somewhat different form

from (50), as it contains no logarithmic term. The formula is

\Era\'

The very different form of the classical and quantum theoretical expres-

sions makes a comparison with experiment of especial interest. The

best substance to choose for the comparison is hydrogen; the use of

approximate wave functions is here least likely to lead to serious error,

it being unlikely that any important difference between the molecule

and atom exists, except the ionization potential which we must take

to be that of the molecule (16 volts). The observations of Williams and

Terrouxll for v = 0-54c give the number of ions produced per cm. path at

N.T.P. as 12-6. The formula (51) gives 14-7, and the classicalformula (52)

3*5. The quantum theory formula thus gives much better agreement.

t Ann. der Phys. 5 (1930), 325.

t Bethe, loc. cit.

§ Phil. Mag. 23 (1912), 449.

II
Proc. Roy. Soc. A, 126 (1930), 289.
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3.4. Distribution of various types of collisions for high-velocity impacts

In Table Vj the relative probabilities of different types of collision

of high-velocity electrons with hydrogen atoms are given. These values

include all relativistic corrections (see Chap. XV, § 2).

TABLE V

Energy of incident electron in volts

Type of collision 1,000 10,000 100,000 10® 10® 10'®

Percentage of all collisions

Elastic 8-7 6-5 51 41 2-66 1-8

Excitation of 2-quaiitum levels 42-8 45-3 47*5 49-5 51*6 62*8

»» »> 3- ,, ,,
6-3 70 7*3 7-8 8*1 8*4

„ 4- 2-41 2-60 2*71 2-79 2-90 2*96

„ „ 6- M7 1-24 1-28 1-32 1*36 1*38

„ „ higher,, „ 217 2-28 2-33 2-38 2*42 2*46

All discrete levels 54-8 58-4 61-2 63-4 66*4 680
Ionization 36-5 351 33*7 32-6 31*0 30*2

Energy-loss per primary ion in volts 51-4 69‘9 64-8 66-9 68*6 69*4

,, ,, collision ,, ,, 18-7 21-0 21-7 21-7 21*3 21*0

Total cross-section by 10”*® cm. 3.200 426 660 30-6 42*8 60*0

4. Calculation of the stopping-power of matter for fast electrons

4.1. Hydrogen. Preliminary theorems

4.11. Generalized transition probabilities and oscillator strengths. It

will be found convenient in the calculation of the total energy loss per

cm. path of electrons in passing through matter to define certain

quantities associated with the various transitions. These quantities are

generalizations of quantities associated with optical transitions.

The optical transition probability associated with a transition from

the mth to the nth level is defined as

4>mn =
We generalize this quantity by writing

^mn(^)

(63)

which reduces to (63) for zero momentum change. Associated with the

optical transition probability oscillator strength which

IS defined as ^ -n j j

Jmn ^mnTVfin^

where R is Rydberg’s constant and is the frequency associated with

the transition. The generalized oscillator strength associated with the

t Due to Bethe, Handbuch der Phyaik, 2nd edition, xxiv/1 (1933), 619.
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m-^n transition is then defined asf

f^K) = ^ \.UK) P.

We note that the differential cross-section corresponding to the

transition is given by

The loss of energy per cm. path in passing through a gas containing

N atoms per c.c. will thus be [cf. equation (59)]

dT l^TT^me^N^
dx

•^m*x

2 J
^min

4.12. Summation theorem for generalized oscillator strengths. Let us

consider the value of

lUK) =^2 I

The functions satisfy the equations

^Ho+ ^-^{Eo-V)^o = 0,

vv:-

' A*

Svhn

'~W {E^-V)4,l ^ 0 .

(55.1)

(55.2)

Multiplpng (55.1) by and (55.2) by i/tq, subtracting, and integrating

over all space, we obtain

{E,-E,)

The right-hand side reduces to

f
(56)

Now

2 [J [J = J
^^*dr == 0,

as may be proved by following a method similar to that used in § 2.3.

t Bethe, Ann. der Phys. 5 (1930), 326*
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We then have

^2*2

= |Jl#o
' dr\ — 1 .

Hence finally we see that 2/on(^) ~ (67)

4.2. Calculation of the stopping-power of hydrogen

The loss of energy per cm. path, —dTjdx, of an electron passing

through a gas containing N atoms per c.c. is given by

T /]n Xjnax

^ {E,-E^)IUK)dK, (
58

)

Xjnin

-^-^2 j
{E,-EMK)dK,

Xjnin

which reduces to [cf. eq. (54)]
-K^ina.1

j
fon{K)^^

dT _ \&-n^me*N

"d^ ¥h^ 2, (59)

F'rnin

We cannot at once use the summation theorem (57) to evaluate the

sum, as -Kjnin is a function of n; we therefore divide the range of integra-

tion into two halves, according as K is greater or less than Kq, where

Ko = (60)

At first sight it would not appear to be necessary to take into account

momentum changes greater than the quantity (60), since it was shown

in previous sections that for such large values of Ky /on(^) is very

small; but transitions in which there is a large momentum change are

associated with large energy losses and so give appreciable contributions

to the sum (59). In fact we shall show below that both ranges give

approximately equal contributions to the energy loss. We denote the

two contributions to the energy loss per cm. by E', E" respectively.

For the calculation of E\ the energy loss in transitions with small

change of momentum, we expand powers of K as in (39) so

E' = USTT^mWe^

We may now use the formula

%7T^m ^(E^-E,)M=\,
(
61

)
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which gives

k%^ A* 2 (62)

Since we are dealing with fast electrons, we may use the approximate

expression derived in § 1.1 for

-^mln = irr^m{E^—E^)jW.

Substituting in (62) and remembering that

— 27T^m€^lh^n^ = Rhln^, 27T'^me^lh^ — Eh^

we obtain finally

E'
l^TT^mNe^i

kVi^

For the energy loss jE" due to large momentum changes we have
(63)

E'' = N2
j
{E^-E,)IUK)dK.

Kc

Making use of the summation formula (57), we obtain

E"
167T®7)le*iV

J
dK
K'

(64)

(65)

In fixing it is important to note that the expressions given by

Born’s approximation for /o,i(^) are no longer valid if the momentum
change is very great. We cannot, therefore, use the expression (13) for

Xjnax (^4), but must employ the condition of conservation of momen-

tum in the collision between the incident and atomic electron. Since

the masses of the two electrons are equal, the maximum momentum
which the atomic electron can receive will be half the total momentum.

We take, then.

Carrying out the integration, we obtain

167r®miV^e^
E^ =

PA2
{logfc— logiTo).

(
66

)

Adding (66) and (63), we obtain for the total energy loss per cm. path

dx mv^
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The summation may be carried out numerically using the usual formulae

for the matrix elements The final result is

dx

4776W, mv^
(c = M05).

(
68

)

4.3. Complex atoms

It is possible to generalize the formula (68) for complex atoms if

hydrogen-like wave functions are assumed and allowance made for

transitions excluded by the upper states concerned being already occu-

pied. This has been done by Bethe,| but the results are not accurate

enough for most purposes. Instead it is best to represent the stopping-

power of atoms with Z electrons by the formula

dT (mv^\ . .

where / is a mean excitation energy. The determination of I is best

carried out by experiment, though BlochJ has shown how an approxi-

mate value may be obtained for it by treating the atom according to

the Fermi-Thomas statistical theory.

4.4. Relation to Bohr^s classical formula—the method of impact para-

meters

The classical theory of stopping-power was worked out by Bohr§ in

1913. It differs from the formula (68) in that the argument of the

logarithm is multiplied by a quantity of order hvj^.^. The range of

validity of the different approximations has been discussed by Bloch
||

and by Williams,ft We shall follow the method used by the latter author

as it gives considerable insight into the relative importance of the

phenomena involved.

Consider a fast electron passing through matter containing N atoms

per c.c. each of which contains Z electrons. If these electrons were free,

the number of collisions per cm. in which the incident electron would

be deviated through an angle between d and 6+dd would be given by

the Coulomb scattering formula

Nzi{e) de = {
27rNZ€^imh^) de/e\

provided 6 is not too large. In such a deflexion the energy transfer is

t Ann, der Phya, 5 (1930), 326.

j Zeita.J. Phyaik, 81 (1933), 363.

§ Phil, Mag. 25 (1913), 10; 30 (1916), 58.

II
Ann. der Phya. 16 (1933), 286.

tt Proc. Roy. Soc. A, 139 (1933), 163; Rev. Mod. Phya. 17 (1946), 217.
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approximately mvW^, so the energy loss per cm. caused by collisions in

which 0 is > would be

^ _ 2nNZe* r ^ ^ 2'nNZe* /^\
dx ~ mv^ J d mv^

(70)

^uiax taken as unity for our purposes as we only wish to obtain

the order of magnitude of the argument of the logarithm. On the other

hand, the effect of the binding forces may be regarded as providing the

lower limit insert in (70).

According to classical ideas the binding will only be effective in

limiting the energy transfer when the time of collision is comparable

with, or greater than, the period of revolution of an electron in its orbit.

The time of collision is roughly given by pjv, where p is the impact

parameter, measured relative to the atomic nucleus as centre. As the

time of revolution in the orbit is of the order hJE, where E is the

binding energy, the classical condition for ignoring binding effects is

that the impact parameter p should be < p, where

p ~ hvjE. (71)

If p is ^ dy where d is of the order of the orbital radius of the atomic

electrons, this classical condition will remain valid in quantum theory.

For, in these distant collisions, the incident electron is only slightly

deviated and its perturbing influence on the atom is capable of classical

description.

Since hjE is ofthe order dju where u is the orbital velocity of the atomic

electrons, the condition p ^ d is satisfied if v^ju^ ^ 1. When this is so

it remains only to relate the maximum effective impact parameter p to

^min- This may be done by the same procedure as that described in

Chap. VII, § 5, and applied in Chap. IX, § 6, to multiple scattering.

We have ^
^min — —^ < 1).

mvp

mv^p

Substituting in (70) and using (71) we find

where Qi and are quantities of order unity.
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Of these expressions (72) is equivalent to the formula (69) while the

second is Bohr’s classical formula. Thus the condition u^jv^ < 1 is

assumed in the derivation of both. For the stopping of electrons this

is incompatible with the condition e^jhv > 1 ,
so that the classical formula

is never vaUd for such cases. In Chap. XII, § 2.3, the stopping-power

of matter towards heavy particles is considered, and it will be shown

there that Bohr’s formula is valid over a certain energy range when the

particle possesses a large charge.

The above conclusions have been confirmed by a detailed analysis

due to Bloch,t while MottJ has given a strict proof of the equivalence

of the method of impact parameters and Born’s approximation under

the conditions stated above.

4.5. Comparison with experimental values

The apphcation of the formulae (68) and (70) for the energy loss per

cm. of fast electrons in (atomic) hydrogen and other gases has been

considered exhaustively by Williams.§ In order to compare the theoreti-

cal and experimental values it is necessary to increase the results by

about 10 per cent, to allow for the fact that in practice the electron

which emerges with the greater energy after the coUision is taken as the

^-particle. After applying this correction a very good agreement is

obtained with experiment, as illustrated in Table VI. The values given

TABLE VI

Range of Fast Electrons in Hydrogen

Range [cm.)

vjc U^lv^ €^l{hv) Observed

Bethe

{Quantal)

Bohr
{Classical)

017 0-0007 0-06 0-76 0-77 0-52

0136 0-001 0-07 0-37 0-34 0-23

by Bohr’s classical theory are also included. Values of e^jhv and

(where u is the orbital velocity of the atomic electrons) are given. If

Bethe’s formula (68) is valid both these quantities should be small

compared with unity, as indeed they are.

Further evidence in support of the quantum theory of the stopping-

power of matter for fast charged particles wiU be discussed in Chapter

XIII in connexion with the passage of heavy particles through matter.

t Loc. cit.

t Proc, Camb. Phil. Soc, 27 (1931), 663; and Frame, ibid. 27 (1931), 511.

§ Proc. Roy. Soc. A, 135 (1932), 108.
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4.6. Relative contribution of light and heavy collisions to stopping-power

It was shown in § 3.31 that the number s^ of primary ions produced

per cm. path is given by

27tN€^ ’Sp C,,

Sn = >
mv^ ^nl

where the quantities are as defined in equations (49) and (50).

dTjdx
The energy loss per primary ion produced is then given by

For nitrogen this gives, for electrons of 30,000 volts energy, an energy

loss per primary ion produced, of roughly 80 volts, and for hydrogen

100 volts. This high value arises from the fact that a larger percentage

of collisions lead to excitation than to ionization. The contribution to

the energy loss per cm. due to heavy collisions (in which a fastf electron

is emitted) is, moreover, quite considerable, owing to the great energy

loss in the collision. It is given by

K
ko

E" 1 ^ „

nl

K

nl

rd log©•
where 87r2m|JE'^;|/*2 . Referring to the expression

(
68

)
for —dTjdx,

we see that heavy collisions account for roughly half the total energy

loss.

It is also of interest to note that Williams has used the method of

impact parameters to determine the relative importance of close and

distant collisions. He finds that for a 100,000 volt electron traversing

hydrogen, out of every fourteen atoms ionized or excited, only one lies

in the direct path of the electron, and that four lie between 2*5 x lO""^

and 10“® cm.

5. Inelastic collisions of slow electrons with atoms

The theoretical investigation of inelastic colhsions of slow electrons is

much more complicated than for fast particles. Experimental evidence

shows clearly that electron exchange becomes important, and the

observations of Mohr and NicoUJ of the angular distribution of in-

elastically scattered electrons in mercury vapour and in argon show

that the distortion of the incoming and outgoing waves by the fields

t With energy great compared with the ionization potential,

t Proc. Roy. Soc. A, 138 (1932), 229 and 469.
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of the normal and excited atoms respectively must be taken into

account (see below, § 5.3).

It was pointed out at the beginning of this chapter that according to

Born’s approximation the probability of excitation of a level belonging

to a term system different from that of the initial state is zero. For

impacts of sufficiently high velocity this is in agreement with observa-

tion, but for low-velocity collisions the excitation of these levels takes

place quite readily, and at certain velocities may occur even more often

Energy of Incident Electron in Volts

Fig. 45. Observed excitation functions of and 3®P levels in helium. The curves

were obtained by measurement of the variation of the intensity of excitation of the

spectral lines produced by optical transitions to the 2^6", 2^S levels respectively.

than the excitation of a level of the same term series as the initial state.

Thus in Fig. 45 we show the excitation probability velocity curves for

the excitation of the 3^P and 3^P levels of helium from the ground l^S

state, measured by Leesf using optical methods (see Chap. IX, § 1).

When the energy of the exciting electrons is greater than 100 volts,

triplet excitation occurs very seldom compared with singlet excitation;

but at voltages just above the excitation potential the reverse may be

the case. This is a general feature of the observations of the excitation

of various two-electron systems. J In all cases the triplet excitation

curve rises to a maximum very rapidly at about a volt above the

excitation potential, whereas the corresponding singlet curve attains

a maximum much more gradually (except for S states). The magnitudes

of the corresponding maxima are comparable in all cases.

If the coupling between spin and orbital motion is small, triplet

excitation can only take place if electron exchange occurs on impact

t Proc, Roy. Soc. 137 (1932), 173.

j Hughes and Lowe, ibid. A, 104 (1923), 480; Skinner and Lees, Nature, 123 (1929),

836, and Lees, Proc. Roy. Soc. A, 137 (1932), 173; Hanle, Zeits. f. Phyaik, 56 (1929),

94; Michels, Phya. Rev. 36 (1930), 1362; Thieme, Zeita. f. Phyaik, 78 (1932), 412. Fora
detailed description of experimental methods and results see Massey and Burhop,
EUct/ronic and Ionic Impact Phenomena, Chap. II.
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in such a way as to change the S3nnmetry of the spin function of the
atomic electrons. Therefore the experimental results show that the
exchange process is important for low-velocity collisions. This process
is not Umited to excitation of levels of another term system, and must
also be taken into account in singlet excitation.

Interesting results have been obtained by Mohr and Nicoll (loc. cit.),

who investigated the angular distributions of electrons with initial

energies between 50 and 120 volts scattered in various gases after

Theoretical Experimental

Fig. 46. Calculated and observed angular distributions of electrons scattered by argon
atoms.

Elastically scattered electrons.

Electrons which have excited the argon resonance level.

exciting the most probable level. Some of the observed curves are

illustrated in Fig. 46. For the heavier gases the maxima and minima
are very noticeable. The similarity of the diffraction effects observed

in angular distributions of elastically and inelastically scattered elec-

trons of the same incident velocity indicates that the two effects are

due to the same cause, the distortion of the electron waves by the

atomic field. This wiU be discussed further in § 5.3.

5,1. Application of theory of collisions

A completely satisfactory method of dealing with slow inelastic

electron collisions does not yet exist, but by using the general theory of

Chapter VIII we may obtain approximate formulae for the probabilities
36M.67 «
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involved. The scattering of electrons which have excited the T^th state

of atoms of hydrogen and helium may be described by means of two

wave functions ^n(*'2 )
which have the asymptotic forms

Ki^i) ~ exp(iA;,„ rj),

~ 9n{62> r^). (74)

The differential cross-section for excitation of the nth state is then

given by

'W) = I
for hydrogen,

= j <f>) l*> for helium. (76)

In Chapter VIII, equations (38) and (39), these functions are shown

to satisfy the equations

[Vf+i^F„(r,) - (i-^)T(ri,r,)^:(r,)dT2,

[^l+K]On{T2) = J
(i-^)'F(r„r,)^*(rO dr,. (76)

The function T is the solution of the wave equation for the complete

system of atom and incident electron. To solve these equations we
must, as in Chap. X, § 6, substitute some approximate form for T* on

the right-hand side of (76). We shall set on the right-hand side,

'I' = -P’o(ri)^Ao(r2)+^;(r,)^„(r,)+G„(r2)^„(r,). (77)

Here jF{,(r) is the solution representing an incident wave and a scattered

wave, as discussed in Chapter II, of

= (78)

We note that (77) is not the same approximation as that used in

Chap. X, § 6, in dealing with the elastic collisions. By including terms

in 0^, we ensure that on the right-hand side of (76) all diagonal elements

of the interaction energy shall be included. The only non-diagonal

matrix elements are those, which refer to the initial state of

the atom.

On substitution in (76) we obtain, by following a similar procedure
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to that used in the consideration of the elastic exchange, the equation

[v?+iS-?^F„„(r,)]R(rO±»n(ri))

= (“^^)rarxMo(ra)^A*(r,)±Fo(r,)^o(rOV':(r,)+

+{(?„(r2)±i;;(r,)}^„(r,)-A^(r2)] dr^j. (79)

The third term on the right-hand side makes further approximation

difficult except for high velocities of impact. In this case we may
neglect the effect of the atomic field in the zero-order approximation,

and write on the right-hand side of (79)

Fo(ri) = exp(i*no.ri), Qjr^) = 0.

We then obtain

(v+t;)K(r.)±G,(r,))
» J

X {exp(iA:no . ri)0o(r2)^t*(r2)±exp(iA:no . dr^. (80)

Solving this equation by the method of Chap. VI, § 4, we have

^ 2W
JJ

|i_±|[-exp{i(^;no-A;„ni).ri}.^o{r2)^^(r2)±

±exp{»(A!no.r2-i:„ni.ri)}i/.o(ri)^*(r2)] dr^dr^. (81)

A possibly less drastic approximation is to ignore the third term in

(79). This term represents the effect of exchange in determining the

form of the wave As, in failing to include GJ^r^iliJ^r^ in the

approximation (77) we have ignored the similar effect on Fq, we should

omit the term for the sake of consistency. This gives

“^ J/
W.(''.)«(r.)3.(''..>'-0.)-

where 5n(^> solution of the homogeneous equation

[v2+i*_?^F„„(r)]gf„(r,d) = 0,

which has the asymptotic form

(5„(r, d) ~ exp ik^ z-\- r-^ exp ik^ r X function oiO,(f>,

cos01 = cos0coB6i+shi0sin0iCos(^— ^i).and
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The interpretation of the formulae (81) and (82) is interesting. The

first term represents the directly scattered waves, the second the elec-

tron exchange. They are both of the form expected, being the integrals

of the interaction energy over the initial and final wave functions of

the system. The formula (82) differs from (81) in that the former

includes the effect of the potential field on the outgoing wave and

of the field ^00 on the incident wave.

A further approximation might be made by replacing the function

Fq in (82) by Fq— Oq, which satisfies the integro-differential equation (12)

of Chapter X, and 3fn by the solution of the corresponding integro-

differential equation when the atom is in its ?ith excited state.

As far as these approximations are concerned we note that there is

a similar difficulty to that discussed in Chap. X, § 5. The form (77)

assumed for the function T* does not satisfy the orthogonaUty conditions

{^-F^{r,)Ur2)mr^)dr,=^Q,
•'

(83)

l^-Gn{r.)Urx)mr^)d^, = 0.

For sufficiently high velocities of impact the errors made wiU be small,

but this may not be so for electrons with energies near that of excitation.

Furthermore, we have assumed all non-diagonal matrix elements to be

small, neglecting the effect of the reaction of the waves 0^ on the inci-

dent and elastically scattered wave Fq, This corresponds to weak coupling

between the two sets of waves, but actually, in certain cases, it may be

necessary to assume ‘close coupling’ corresponding to a large value ofthe

non-diagonal matrix element It will be shown below that the experi-

mental evidence does indicate the necessity for including such effects.

The approximation of neglecting all non-diagonal matrix elements

except also fails to include the reaction of the other inelastically

scattered waves on the 0—n excitation. These last approximations

differ from those made above, as they are not introduced by exchange

considerations but are inherent in the method of distorted waves (Chap.

VIII, § 5) and have already been discussed in that connexion.

5.2. Calculations for helium and comparison vnth experiment^

The singlet and triplet excitation cross-sections for helium have been

calculated as functions ofthe velocity of the exciting electron,! using the

approximate formula (81), for several excited states.

t For a more detailed discussion see Massey and Burhop, Electronic and Ionic Impact
Phenomena, Chap. III.

J Massey and Mohr, Proc. Roy. Soc. A, 132 (1931), 606; ibid. 140 (1933), 613.
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A number of general features of the experimental results are repro-

duced. From formula (81) it may be shown that the triplet excitation

probability falls off as v~'^ for 8, P, D states respectively, in

sharp contrast to the variation as v~Hog ocv, v~^ for the correspond-

ing singlet state, v being the incident electron’s velocity.

In the case of both “^8 and ^8 states detailed agreement is obtained

between theory and experiment down to quite low velocities of impact,

Fig. 47. Comparison of observed and calculated excitation cross-section velocity curves.

but for ^P and states the agreement becomes unsatisfactory for

electrons of energy less than 100 and 75 volts respectively. This is

illustrated in Fig. 47. Referring to this figure we see that as the electron

energy is reduced below 100 volts the calculated probabihties of excita-

tion of the P-levels become considerably greater than the observed.

This effect is only apparent for levels at lower velocities and for

8 states it is doubtful if there is any great discrepancy at any velocity.

We showed in §§ 3.2 and 3.3 of this chapter that the same behaviour

is a feature of the ionization and X-ray excitation probabilities, and it

seems that Bom’s formula is least valid for the calculation of transi-

tion probabilities involving optically allowed transitions. Examining

the approximations we have introduced, we see that this almost cer-

tainly implies that the failure of the theory in such cases is due to the

assumption that Von is small. Actually, for the excitation of optically

allowed levels vanishes only as for large r, and such a field has
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a large scattering power (thus the elastic cross-section for such a field is

infinite, cf. Chap. II, § 3). To improve the theory it would be neces-

sary to solve simultaneous equations of the same form as those discussed

in Chap. VIII, § 6. It was shown there (cf. Chap. VIII, Fig. 18) that

accurate solution of these equations will lead to a smaller probability

of excitation than that given by Born’s approximation, just as is

required from the above experimental results. For D levels Von vanishes

as r~^ for large r, and this field will have a much smaller scattering

power than that corresponding to P excitation. We should thus expect

Bom’s approximation to agree with experiment down to much lower

velocities for D excitation, while for S excitation, for which vanishes

as 6““^^ for large r, we expect very little deviation from the simple theory.

This, again, is in agreement with the observed results.

The calculated relative magnitudes of triplet and singlet excitation

probabilities for electrons of energy greater than 100 volts are in

rough agreement with experiment, but it appears that the observed

excitation curves for levels fall off much more slowly with velocity

than the calculated curves. The reason for this discrepancy is not clear

but is probably due to secondary processes occurring in the experi-

mental apparatus.

The excitation of the 2 ^P and 2 ^P levels has also been considered by

the same authorsf using formula (82). The wave function was

calculated numerically by MacdougallJ and the integration of (82)

carried out by numerical methods. The chief interest of this calculation

is that it includes the distortion of the incident and outgoing waves by
the atom and should include the diffraction effects to be expected. For

50 volt electrons an angular distribution is predicted which is of the

form observed by Mohr and NicoU (loc. cit.), becoming approximately

uniform for large angles of scattering biit with a faint maximum at 90°.

There was no improvement found, however, in the agreement ofobserved

and calculated total cross-sections.

5.3. Excitation of heavy atoms

Calculations for the excitation of the 2P levels of mercury have

been carried out by Penney,§ who also used the formula (81). The

chief interest of his calculations is his use of atomic wave functions

which include terms arising from the interaction of spm and orbital

motion. These are quite appreciable for such a heavy atom as mercury.

t Proc. Roy. Soc. A, 139 (1932), 187. J Proc. Camh. Phil. Soc. 28 (1932), 341.

§ Phya. Rev. 39 (1932), 467.
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As a consequence the wave functions for the triplet state 2 are not

completely antisymmetrical in the orbital wave functions, and so this

state can be excited without electron exchange. The excitation of this

triplet level therefore persists at high velocities. The calculated ratio

of the intensities of the various levels agrees well with experiment even

at exciting energies as low as 10 volts. The form of the excitation-

velocity curves for all the levels also agrees qualitatively with the

observations.

We now consider the diffraction effects observed by Mohr and Nicolll

in electrons scattered inelastically by atoms. If we neglect exchange

effects (which is legitimate at moderate to high velocities of impact),

the intensity of scattering of electrons which have excited the nth state

of a given atom is given per unit soUd angle by

m = ^“I J
VUr')F,{r', e')Ur', rr-Q) dr'^, (84)

where Fo„(r) = J
F(r,r„)^o(r„)0*(r„) dr^,

the suffix a distinguishing the coordinates of the atomic electrons. The

functions 6), 5„(r,0) can be written in the form

f’o(r,0) = e«-*'--«+2[n- y(|^)/«+i(fcr)](25+l)i»P,(cos0), (86)

g„(r,7r-0) = e-*=.-«°«0+2[5»- (2s+l)i-^P,(cos@),

(
86

)

where the first term denotes a plane wave undisturbed by the atomic

field and the series represents the disturbance of the plane waves by

the fields of the normal and excited atoms. Substituting in (84), we
find that

4(^) = J
4nexp{i(A:r'cos6i'-fc„r'co80)}(iT'+

+ I
P,(cos 0)

J
Fo, H,{r\ 0’, 4,') dr' \ (87)

where is a certain function of r', 0', 0'. The first term in the integral

is just that given by Born’s formula and its behaviour has been dis-

cussed in § 2 of this chapter. At angles of scattering greater than 30° it

is negligibly small and so the main contribution comes from the series.

The number of harmonics which are important in this series determines

the diffraction effects at angles greater than 30°, Now, if the energy

t Cf. Fig. 46.
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of the incident electron is great compared with the excitation energy,

k, and also the fields of the normal and excited atoms will be

effectively the same. In this case the same number of terms in the

series (85) and (86) will be required, and these will be of the same

relative importance as for the elastic scattering, which is described by

i^o(r, 0). The diffraction effects at large angles will therefore be very

similar to those occurring in the elastic scattering. This is the observed

result.

For low velocities this similarity will disappear, as the field V^n has

a much greater spread than Foo. and so will affect more harmonics of

than Vqq will of jFJ,. The difference between k^ and k will also be

important at these velocities. This result is a feature of the observations

in argon. (Cf. Fig. 46, in which it will be seen that the angular distribu-

tions for the inelastically scattered electrons resemble those for the

elastically scattered at voltages above 55 volts but become more and

more dissimilar as the voltage decreases below this.)

Detailed calculations, using (84), have been carried out by Massey

and Mohr,t for the scattering of electrons after exciting the resonance

levels of neon and of argon respectively. The general conclusions out-

lined above were confirmed. Fig. 46 illustrates the comparison between

the shape of calculated and observed elastic and inelastic angular

distributions for argon.

6. Summary
We show above that, for inelastic collisions of slow electrons with

atoms. Bom’s approximation fails in three ways. It predicts too great

a value for the inelastic cross-section and fails to account for the maxima
and minima in the inelastic angular distributions. Apart also from its

failure to predict the diffraction maxima and minima observed in the

elastic scattering of slow electrons by atoms, it also fails to predict the

large scattering at small angles, which we have interpreted as due to

polarization effects arising from the interaction of inelastic and elasti-

cally scattered waves. The whole position is summarized in Table VII.

A physical picture of the way in which the deviations from Bom’s
approximation arise has been given by Massey and Mohr.J While the

approximation is valid, we may regard an electron as spending such a

short time in the atomic field that it undergoes one scattering process

at most. As the electron energy is reduced, the chance of the electron

t Proc. Roy. Soc. A, 146 (1934), 880.

t Ibid. A, 140 (1933), 613.
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TABLE VII

Analysis of Effects contributing to Scattering Electrons by Atoms

Process involved Elastic scattering Inelastic scattering

1. Scattering by the nn-
disturbod field of the atom
in which the incident wave
is only slightly disturbed.

2. Distortion of incident

and scattered waves by
atomic field.

3. Pilectron exchange.

4. Disturbance of atomic

field (polarization) or, al-

ternatively, effect of inter-

action of scattered waves
on each other.

Small intensity of scatter-

ing. Angular distribution

monotonic, intensity de-

creasing with angle.

Maxima and minima in

cross - section - velocity

curves (Ramsauer-Towns-
end effect). Maxima and
minima in angular distribu-

tions, these being most
marked for heavy atoms
and disappearing at low
velocities of impact.

Apparent for light atoms
(H, He) at low velocities of

impact in producing greater

variability of form in the

angular distributions (i.e.

He below 20 volts).

Greatly increased scattering

at small angles. Increase of

total probability of an elas-

tic collision.

Angular distribution mono-
tonic and decreasing more
rapidly with angle than for

elastic scattering.

No marked effect on cross-

section - velocity curves.

Maxima and minima in

angular distributions at large

angles, closely resembling the

corresponding elastic angular

distributions except for very
low velocities of impact.

Leads to possibility of excita-

tion of certain optically dis-

allowed transitions (i.e. exci-

tation of He triplets). Effect

on angular distributions not

yet known.

Decrease of probability of an
inelastic collision. Effect on
angular distribution not yet

known.

making a second collision with the same atom is increased. The effect

of a second colHsion is to give rise to deviations ofthe character observed.

Thus an electron may lose energy in exciting the atom when still at a

considerable distance from it. In doing so it will suffer httle deviation

and in its subsequent course may regain the energy in a second inter-

change with the same atom, again without much deviation. The electron

will eventually appear to an observer as having been elastically scattered

through a small angle only. As a result there will be a reduction in the

inelastic cross-section and an increase in the elastic scattering at small

angles.

Again, the electron, after first suffering an inelastic scattering, may
subsequently be diffracted by the atomic field. Alternatively, an elec-

tron in a diffracted beam which has hitherto suffered no energy loss

may undergo an inelastic collision without subsequent deviation to

an appreciable extent. Provided the proportional energy lost in an

inelastic collision is small, the effect of either of these processes will be
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to superimpose a diffraction pattern similar to that ofthe elastic scatter-

ing on the monochromatic, inelastically scattered electrons.

It appears that, in electron collisions with atoms, the interaction is

just strong enough for these double processes to become appreciable in

the slower encounters. In impacts of particles, both of atomic mass,

the processes may become adiabatic, as far as energy interchange with

electrons is concerned, because of the high probabihty of multiple

processes during the long time the atoms spend under their mutual

influence (see Chap. XII, §§ 3.3, 3.4). The highly concentrated and very

strong forces between nuclear particles also make the one-body approxi-

mation completely inadequate for describing nuclear collisions except

those between the lightest nuclei (see Chap. XIII, § 2).



XII

THE COLLISIONS BETWEEN MASSIVE PARTICLES

1 . Physical phenomena involved

By ‘Massive Particles’ we mean particles of mass large compared with

that of an electron, such as atoms, cx-particles, etc. We arbitrarily

exclude from consideration in this chapter collisions in which nuclear

forces are involved. These will be dealt with in Chapter XIII.

Although the discussion of the phenomena which depend on collisions

between massive particles is beyond the scope of this book, we give now
a brief summary of these phenomena. A detailed description of the

experimental technique involved and of the data obtained will be found

in Electronic and Ionic Impact Phenomena by Massey and Burhop,

Chapters VII and VIII.

1.1. Passage of fast massive particles through matter

Under this heading are included investigations of the ranges of

a-particles, fast protons (H-particles), neutrons, and heavy nuclei in

various materials. The method of investigation is either by actual

observation of single particle tracks in a Wilson Cloud Chamber or by

direct counting of particles by use of scintillations, valve amplification,

or other methods. The theoretical problem here is to calculate the

energy loss per cm. path through a given material as a function of

the mass, energy, and charge of the particles, and the properties of the

material. The development of such a theory is important, for observa-

tions of energy losses per cm. are often the only means of determining

the nature or velocity of the particle.

1.2. Capture or loss of charge on impact

These phenomena are observed both for slow and fast positive ions.

The behaviour of a-particles in this respect is discussed in Rutherford,

Chadwick, and Ellis’s book Radiations from Radioactive Suhstances,

1930, p. 119. Extensive experiments have also been carried out for

slower ions.

1.3. Transfer of excitation

This phenomenon is very similar to the transfer of charge mentioned

above, consisting in a transfer of electronic or other excitation from

one of the colliding systems to the other. It is of considerable
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importance in experimental physics, particularly in the excitation of

spectra. The presence of small quantities of foreign gases often has

a very pronounced effect on the intensity, or type, of the spectra pro-

duced in a discharge tube. An example is the well-known phenomenon

of the quenching of resonance radiation.

The problem here is to evaluate the transition probabilities, parti-

cularly as functions of the energy differences of the two excited states.

1.4. Elastic collisions of gas atoms

The development of molecular ray technique has provided a powerful

weapon for the investigation of the interaction of gas atoms. It has

proved possible to demonstrate the wave nature of gas atoms by dif-

fraction of beams of helium and hydrogen from crystal surfaces,f and

the time is not far distant when investigations of the scattering of atoms

by atoms under definite conditions of relative velocity will be a practical

possibility. It is therefore of interest to calculate the effects to be

expected in the elastic collisions of gas atoms.

The calculation of the colhsion cross-sections for gas atoms is also

of interest in connexion with the theory of viscosity and of other trans-

port phenomena in gases. Thus the variation of viscosity of a gas with

temperature depends on the variation of a collision cross-section with

relative velocity.J

1.5. Mobilities of positive ions in gases

A very large number of determinations of the mobilities of ions in

gases have been made,§ but it is only in recent years that the experi-

mental conditions have been such as to render possible a clear under-

standing of the phenomena occurring. However, the recent experiments

of Tyndall and othersjj have shown that the purity of the gas under

investigation is of vital importance. With gases containing even as

little as 1 part in 10® of impurity, ion clusters are formed, with con-

sequent slowing down of the ion. By high purification of the gases used

(argon, hehum, and neon) it has been possible to measure the mobilities

of cluster-free ions in these gases. As the mobility is determined by

the probabilities of collision between the gas atoms and the ions, it is

possible to obtain valuable information regarding such collisions from

these experiments.

t Cf. Fraser, Molecular Rays, 1931, Chap. 4.

t See § 3 of this chapter.

§ Thomson, Conduction of Electricity through Oases, 3rd ed., Cambridge (1928).

li
Tyndall, Mobility of Positive Ions in Oases, Cambridge (1939).
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1.6. Excitation of inner molecular motions

Inelastic collisions between molecules, resulting in the excitation of

rotation and nuclear vibration, are considered under this heading. At

gas-kinetic velocities this is the only possible type of excitation. Direct

experimental investigation of these effects, by methods similar to those

used for collisions with electrons, is not yet possible; but indirect

evidence as to the probabihties concerned is available from the following

sources.

() Measurement of accommodation coefficients. The thermal accom-

modation coefficient of gas atoms on a solid surface is determined by

the probability of energy exchange between the atoms and the vibrating

atoms of the sohd. From measurements of accommodation coefficients

information may be obtained as to the magnitude of this probability

and its variation with temperature.

() The dispersion and absorption of high frequency sound. A depen-

dence of the velocity of high frequency sound on frequency was first

observed by Piercef in carbon dioxide. The cause of the dispersion,

suggested first by Herzfeld and RiceJ, is the failure of the vibrational

degrees of freedom of the gas molecules to follow the rapid temperature

changes which occur during the passage of the supersonic disturbance.

This is because the rate at which energy transfer occurs between vibra-

tion and translation is very low. The same effect gives rise to absorption

due to the introduction of a phase difference between pressure and

density fluctuations, A great amount of observational data is now
available§ on dispersion and absorption in carbon dioxide and a great

number of other gases and gas mixtures. From these data the chance

of vibrational deactivation on impact is known for many molecules.

(c) Reaction rates of unimolecular chemical reactions. It is an empirical

fact that an ‘activation’ energy is required before a unimolecular reac-

tion will take place. In many cases this consists in the excitation of

vibration, and the variation of reaction rate with the pressure of the

decomposing gas or of foreign gases yields information as to the prob-

ability of activation of vibration by collision. Conversely, a theory of

this excitation is of great value in interpreting the observations.

1.7. Chemical reactions in general

Under this heading are included a vast number of phenomena. The
simplest type are two-body collisions, in which a rearrangement of

t Proc. Am. Acad., Boston, 60 (1926),11. J Phys. Bev. 31 (1928), 691.

§ See. for example. Richard, Bev. Mod. Phys. 11 (1939). 36.
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particles takes place on collision; but the most important type are three-

body collisions, where combination or dissociation of two molecules

takes place under the interaction of a third. The chief problem here is

the calculation of the relative probabilities of different types of reaction

in terms of the properties of the reacting substances.

This classification of the various phenomena, which come under the

general title of collisions of heavy particles, is by no means a sharp

one. The last four processes are of a very similar nature, but as the

methods of experimental investigation are very different it was thought

best to separate them as above.

Unfortunately the theory of collisions of heavy particles is at present

not nearly so well developed as the theory of electronic collisions.

Quantitative results are, at present, only available for fast collisions for

which Born’s first approximation is valid, and for the elastic collisions

between gas atoms. However, a number of general results have been

obtained for other cases, and for certain problems, such as the excita-

tion of vibration, the only remaining difficulty is the complicated nature

of the algebra. Following the same general scheme as for electronic

collisions, we consider first the behaviour of fast particles.

2. Fast collisions of massive particles

2.1. The stopping-power of matter for fast positive ions

The calculation of the loss of energy per cm. path of fast positive

ions traversing matter is very similar to the corresponding calculation

for fast electrons, carried out in Chapter XI. We adopt the following

notation:

M^, are the masses of the colliding and struck systems re-

spectively.

M = is the reduced mass of the combined system.

Z'e is the charge on the ion.

The symbols k, k^, #c, n^, n have the same meaning as in Chapter XI.

The formulae of Chapter XI may be used with the mass of the electron

replaced by M, and by The differential cross-section in momen-
tum variables is thus!

Ion(K)dK = dK

,

/I,,,

2

(
1
)

where
«—

1

•'

and Khl27r, as before, is the change of momentum. As before, the

t Cf. Chap. XI, eq. (10).
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effective cross-section corresponding to excitation of the state n will

be obtained by integrating the differential cross-section between the

limits of allowed momentum change. For the fast coUisions under

consideration these limits are fixed by the same considerations as for

electrons, since the matrix elements €Q^(iL) are the same functions of

the momentum change Khj27r for both cases.

The lower limit of K will then bef

the upper limit is fixed by the conservation of momentum, so that

-^mai = 2kmj(M-]rm)

C::i 2kmlM,
(
2
)

Apart from these modifications the treatment is exactly the same as

for electrons. We obtain the following formulae:

Excitation of optical levels :%

Qni.nr = (
3

)

Excitation of X-rays:^

Qii = i^^Z’h*/mv^\E^\)Z^b„ilog{2mv^JB^).
(
4

)

Primary ionization\\\

Qni = i^^Z'h*c^ZJmv^\E^\)log{2mv^/CJ).
(
5
)

Energy loss per cm. path:'\'\

dT
= {^n€^Z'mimv^)Zlog(2mv^lE),

(
6

)
CiX

where E = l*105ifA, for hydrogen.

By comparison with the corresponding formulae for electrons

given in Chapter XI in the sections listed below, we see that for high-

velocity encounters a positive ion of charge +e behaves in the same

way as an electron moving with the same velocity. In the case of the

energy loss per cm. path, there is a sHght difference in the logarithmic

term, which is logimv^jE) for an electron, but \og{2mv^lE) for a massive

particle.

Table I gives a comparison of the observed ranges of a-particles in

hydrogen and helium with those calculated according to the formula (6).

Thus we find that a particle traversing a gas containing N atoms/c.c.

will, in losing velocity from to v^, move a distance R given by

R = [ME^I{^2n€^Z'^ZmN)][Ei{y^)^Ei^^^^ (7)

t Cf. Chap. XI, § 1.1. t Cf. Chap. XI, § 3.1. § Cf. Chap. XI, § 3.2.

II
Cf. Chap. XI, § 3.3. tt Cf. Chap. XI, § 4.2.

it WilUams, Rev. Mod. Phya. 17 (1945), 217.
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TABLE I

Range of oc-particles in Hydrogen and Helium

Gas traversed

Initial and

final velocity

{in 10® cm. /sec.) hv

Distance travelled {cm.)

1

Observed

Bethe

{Qtiantal)

Bohr
{Classical)

Hydrogen 2 054 1-709 0-23 19-0 18-9 16-3

Hydrogen 1-709 1-802 0-25 15-8 16-2 13-7

Helium 2-054 1-709 0-26 22-6 22-3 18-4

where Z is the nuclear charge of the atoms through which the particle

is passing and

= 2log{2mvllE), = 2log(2mt;|/jE),

y

Ei{y) = J
dx,

00

The agreement between the theory and experiment is seen to be good.

Values calculated by means ofBohr’s classical formula are also included.

It is clear that they are less satisfactory than those given from (7). This

is to be expected from the value of for the cases given. Following

the same analysis as that given in Chap. XI, § 4.4, it is clear that the

classical formula would only be preferred if >1.
A second condition for the validity of Born’s approximation, which

yields (6), was stated in Chap. XI, § 4.4, in the form u^jv^ < 1, where u

is the orbital velocity of the atomic electrons. In considering the stop-

ping-power of matter containing complex atoms the question arises as

to whether this is to be interpreted as requiring that the positive ions

concerned should be moving faster than even the K electrons. This is

an important matter in dealing with the passage of positive ions as

distinct from electrons. Thus, in order that an a-particle should be

moving faster than the K electrons of, say, oxygen, it would have to

possess an energy in excess of 800,000 e.V.

It was pointed out by Hennebergf that Born’s approximation may
be used for the calculation of energy loss even if the positive ion is

moving slower than the K electrons, provided the nuclear charge Ze of

the atom is much greater than the charge Z'e of the ion. This may be

seen as follows. The appropriate method for dealing with collisions in

which the relative motion of the colliding particles is slow compared

with that of the internal motions is that of perturbed stationary states

(P.S.S. method) (Chap. VIII, § 7). If the nuclear charge is ^ Z\ the

t Zeita,f, Ph/ysikp 86 (1933), 592.
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perturbation ofK electron wave functions by the ion will be small. It

is shown in Chap. VIII, § 7, that, under these circumstances, the P.S.S.

method gives the same result as Bom’s, apart from certain unimportant

terms. Bethef has made use of this extended range of validity of the

formula (6) in deriving accurate semi-empirical data for the stopping-

power of different materials towards protons, a-particles, etc. It must
be remembered, however, that Bom’s approximation is not valid when
u^jv^ ^ 1 if Z is not ^ Z\ i.e. for protons in hydrogen with energy

< 25,000 e.V.

2.2. The capture of electrons by fast positive ions

The general theory necessary has been developed in Chapter VIII,

this being a rearrangement collision in which the reaction is

(nucleus A and electron)+nucleus B
-> nucleus (nucleus B and electron).

Since we are dealing with fast collisions we may use Born’s approxima-

tion and the formulae of Chap. VIII, § 4.2. The cross-sections for

capture of an electron from state n around nucleus A to state q aroimd

nucleus B is given from Chap. VIII, eq. (45) by

^ v' 87rW2
VnA-*qB — ^ A*

^
TT

X J|JjF{r,,p)^iJ(re)^A„(r.)exp{i{^no.r-i,n.p)}dr,(ip sinedd. (8)

0

Here V{t^, p) is the interaction energy between the nucleus A and the

electron, 0n(^e) wave function of the electron in the state n round

nucleus A^ i® l^hat of the same electron in the state q around

nucleus JB, p is the distance between the nucleus A and the centre of

mass of the system (nucleus B-felectron), and denotes the electronic

coordinates. M is the reduced mass of the final system; if we denote

the masses of the nuclei A and B by respectively and the mass

of the electron by m, then

M = MJ^Ms+rn)l{M^+Ms+m).

The wave numbers /fc, are given by

. _ 27rv {M^+m)MB
j. _ 2nv' (Ms+m)M^ . .

h M^+Mb+m’ « h M^+Mb+m’ ^ ’

v, V* being the initial and final relative velocities, n^, n denote unit

t Rev. Mod. Phys. 9 (1937), 263.

T8M6.«7
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vectors in the directions of initial and final relative motion, so that

n^.n = COS0.

It is convenient to evaluate (8) by changing from the coordinates

p, Tg to the coordinates r^, which denote the positions of the electron

relative to the nuclei A, B respectively. We then obtain

Q _ v’ 87rW2
nA-9B -

^ ^4

TT

j I
//

^

^

0

< expj^^{A . r^-B . r^)
j

dr^ &in6 ddy (10)

where V[r^) is written for F(r^, p), and

{M^+MB+m)K = M^M^vn^—MJ^Ms+myny
— Mj^{M^^-\-m)vnQ—Mj^M^v'n,

(
11

)

Since the variables occurring in the double integrals are now separable,

the calculation may be completed without difficulty if the atomic wave

functions have a simple form.

The calculation of the cross-section QnA-^qB capture into a IS

state from b> IS state has been carried out by Brinkmann and Kramers

using formula (lO).t They find that if the velocity v is so high that

the contribution to the cross-section comes only from small momentum
changes,

Q = Z^Z'h^[8^+{Z+ZyY\s^+{Z-Zy]-\ (12)

where s — hvl27T€^ and Ze, Z'e are the nuclear charges. This expression

shows that for high velocities the probabiUty of capture falls off as v~^^,

in sharp contrast to the excitation probability which, for optically

allowed transitions, falls somewhat more slowly than v~^ (see formula

(3) of this chapter). This is due to the presence in the capture problem

of a term proportional to v in the minimum momentum change, due

to the momentum involved in the electron transfer. No such term

occurs in the case of direct excitation.

Since the experiments of Rutherfordf and of Jacobsen§ refer to the

capture of electrons by a-particles moving through air, Brinkmann and

Kramers (loc. cit.) carried out the calculations approximately for cap-

ture from nitrogen atoms. They obtained reasonably good agreement

with experiment, as is shown in Fig. 48. The empirical law found by
Rutherford to represent the variation of the probability of capture with

velocity, namely, q ^
t K. Wet, Amat. 33 (1930), 973. t Phil, Mag, 47 (1924), 277.

§ Ibid. 10 (1930), 401.
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is due to the fact that in the experimental range the probability of

capture of a electron increases with increasing velocity of the a-

particle, whereas the cross-section for capture of an L electron decreases

with nearly the 12th power of the velocity. The combination of the

two effects leads to the law (13).

Fig. 48. Cross-sections for capture of electrons

by a-particles.

A, Theoretical curve for nitrogen.

B. Theoretical curve for capture into a state from a
nucleus of charge 7.

2.3. The stopping-power of matter for fission fragments’\

The nuclear fragments which result from fission of heavy nuclei (see

Chap. XIII, § 6) possess an initial velocity of about l*5x 10® cm./sec.

and an ionic charge of about 256. In order to obtain approximate

expressions for the rate of energy loss by these fragments as they

traverse different materials it is necessary to determine the effective

ionic charge as a function of the velocity v of the ion.

At any particular velocity there will be a balance set up between the

processes of capture and loss of electrons so that the mean charge on

the ion will be Provided the velocity of the fragment is large

t Bohr, Phya. Rev, 58 (1940), 664 ; ibid. 59 (1941), 270 ; Kgl. Danake Vid. Selak, Skr. 18

(1940), 8; Lamb, Phya. Rev. 58 (1940), 696; Knipp and Teller, ibid. 59 (1941), 669.
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compared with the orbital velocity u of the electrons in the atoms of

the material through which the ions are passing, the rate of energy loss

is then given by

dx mv^
log (U)

Bohr's classical formula is used instead of Bethe’s formula (6) because,

over most of the range for which u^/v^ is small, ^TrZefl c^/hv is greater

than unity (see Chap. XI, § 4.4).

The criterion adopted by Bohr for the determination of depends

on the result, illustrated clearly from the

results of § 2.2, that capture of electrons

into orbits in which the orbital velocity

is less than the velocity of the ion is very

improbable. On the other hand, the

probability that an electron in an orbit

with velocity greater than that of the ion

will be lost by ionization wiU be small,

j 2 ^
the conditions being nearly adiabatic as

4 a 1

^ ^
,

.far as the electron is concerned (see § 3.4).
Fig. 49. Relation between degree of

% r i_ i /
ionization and velocity of the most ff follows therefore that the most loosely
loosely bound electron, calculated by boimd electrons in the fragment will be
use of the Fermi-Thomas model. i i i -T

those whose orbital velocity is com-
parable with the ion velocity v, i.e. = yv, where y is of order unity.

If is known, may be determined.

The simplest way of relating Zes to is to use the Fermi-Thomas
field for an ion, as was done by Bohrf and by Knipp and Teller. J The
latter authors obtained the relation illustrated in Fig. 49. As for the

value of y, Bohrf assumed that 7 = 1
,
but Knipp and Tellerf obtained

a more accurate estimate empirically by analysing data available on

the range in air of 0^®, and F^® ions produced by nuclear

disintegration. They found that y should be taken between 1-5 and 1*9

for fission fragments in air.

As the velocity of the ion falls the effective nuclear charge decreases.

The formula (14) becomes invalid when v falls below u, the velocity of

the atomic electrons of the gas traversed, but, by then, the contribution

to energy loss due to electron encounters has become so small that it is

considerably exceeded by loss due to nuclear encoimters. If is the

mass of the fragment ion,M2 of the gas atoms, and Zg their respective

t Loc. cit. t Loc. oit.
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nuclear charges, then, due to nuclear encounters,

isin d dd,

cosec^

0

where 1(6) is the differential cross-section for a collision in which the

angle of scattering in the centre of mass system is 6 (see Chap. VIII, § 9).

Following the same procedure as in

Chap. IX, § 6, we write, for 0 >
the Coulomb scattering formula 6 N.

''
\ I

®
^ \

and ignore contributions from d < ^min- I \
^mln must be related to the effective

I

screening distance a by the classical % -

relation. ^
i i l__. i

An estimate of a may also be made
by means of the Fermi-Thomas model. ^

In this way Bohrf found that

a ~ ao(Zi+Z|)-*. §1^ \/Electronic

The relative importance of the con- gx;1 - \
tribution of electronic and nuclear colli- Nucl^r

sions to the stopping in air of a fission |? q ^.q ^.5 ^ q

fragment ofmass number 94 and atomic Dfsbancc traversed in cm.

number 37, with initial energy 100 Theoretical stopping cross-

M.e.V., IS illustrated in Fig. 50. In this ^ function of the distance traversed,

figure the ‘stopping cross-sections’ Contributions from electronic and

N-^dTjdx due to the two processes are ^he upper diagram gives the veloci^

shown as functions of the distance of the fragment as a function of dis-

traversed, y being taken as 1 *5 through-
traversed,

out the range. It will be seen from the accompanying diagram, which

gives the velocity ofthe fragment as a function ofthe distance traversed,

that the condition for validity of the expression (14), that v should be

greater than the orbital velocity of the atomic electrons, is not satisfied

towards the end of the range. However, as the nuclear effect begins to

predominate here, it is probable that no important error is made.

Electronic

0-5 1*0 1*5 20
Disbance traversed in cm.

2.4. Multiple scaUering

The theory of multiple scattering of electrons has been discussed in

Chap. IX, § 6. An exactly similar analysis may be applied to the

t Loc. oit.
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multiple scattering of charged massive particles. The mean square

deflexion Misgiven by

where »c = ^nNtZl Zl Ml V*}.

N being the number of scattering nuclei/c.c., t the thickness of material

Z2 €, and M2 the charge and mass of the scattering nuclei and c and

Ml the corresponding quantities for the incident particles, which possess

a velocity v. For have

- 2^lOZmMi+3l2)/{MiM2va,) (Z, < 1), (15)

== S^SZte%Mi+M2)/{MiM2V^a,) {ZiZ2€^lfiv > 1). (16)

Whereas for electrons wave conditions prevail corresponding to (15),

for many cases in which massive particles are scattered the classical

condition (16) is satisfied. Thus Table II, taken from a paper by E. J.

Williams,! gives a comparison between observed and theoretical values

of the most probable angle of scattering for a-particles scattered by foils

of different materials. The classical formula (16) is seen to fit the

observations better than the wave formula (15) as would be expected

from the value of the discriminating parameter Z^ Zg

TABLE II

Multiple Scattering of oc-particles

Scattering element hv

Most probable angle of scattering {degrees)

Observed

Classical

theory
\

Born
approximation

Gold 20 21 1-74 307
Tin 13 1-5 ! 1-43 2-20

Silver 12 1-5 1-37 211
Copper

i

1-1 104 1-46

Aluminium
1

^ 0-6 0-69 0*85

3. Slow collisions of heavy particles

3.1. Elastic collisions of gas atoms

As was pointed out in § 1.4 of this chapter, it is of considerable

interest to calculate the collision cross-sections for gas atoms colliding

with each other with gas-kinetic velocities. Besides the total elastic

cross-section Q, which may now be measured directly by molecular ray

methods,! we require also the cross-sections Q^, Qj^ which are effective

t Mod. Phya. 17 (1945), 217.

j Cf. Fraser, Molecular Bays, 193J, Chap. 4.
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in viscosity and diffusion respectively. These are defined byl

TT

= 27t
j
I{d)amW dO

0

TT

~ 27t
j
I{d)am^ Idain 6 dO,

0

where 7(0) is the scattered intensity in relative coordinates. These may
be compared with ^

Q -= 2n
j
I{e)sme de (is)

[cf. Chap. II, eq. (18)].

The coeflScient of viscosity ry of a simple gas at absolute temperature

T is then given byj

__ 5 / 27r\| 1+e

where j = 1/2/cT, M is the mass of a gas atom, k is Boltzmann’s con-

stant, and i?u is given by
00

^11 = i dv-

V denotes the relative velocity of the gas atoms, of which as defined

above is a function; € is a small correcting term of order 10“^.

Further, the coefficient of diffusion D between two gases (distin-

guished by suffixes 1 and 2) is given by

D = 1 1

(»'l+ V2)Pi2 1— €o’

where vg denote the numbers of each kind of atom per unit volume,

ilfg are the masses of each kind of gas atom, €q is a small correcting

term§ depending on vg, and

P..-2
— 00

In order to investigate the modifications of the classical formulae

which are introduced by the quantum theory it is simplest to start

with the rigid sphere model for the gas atoms. We thus set for the

t Vide Massey and Mohr, Proc. Roy. Soc. A, 141 (1933), 434.

t Chapman, Phil. Trans. A, 216 (1916), 279; 217 (1917), 115. See also Massey and
Mohr, loc. cit.

§ Chapman, Phil. Trans. A, 217 (1917), 116.
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interaction energy between the spheres

V{r) = 00 (r < fo)

= 0 (r > ro).

On the classical theory this gives for Q the value vrg and for 1(6) the

value Jrg. To calculate the scattering on the quantum theory the

method of Chapter II may be applied (cf. Chap. II, § 5, where it is

shown that in the low-velocity limit Q 47rrg). If the colliding atoms

are similar, account must also be taken of the symmetry relations

iO 20 30 10 20 30 10 20 30

Itcto/K

Fig. 51. Illustrating'behaviour of quantum theoretical cross-sections effective in

viscosity, scattering, and diffusion, on the hard sphere model.

Curves A refer to dissimilar atoms, B to identical atoms.

introduced by the Bose-Einstein statistics (cf. Chap. V). In this case

I{d) contains only even harmonics and so is sjnnmetrical about 0 = Jtt.

The exclusion of odd harmonics has the general effect of increasing the

deviations from classical theory, as will be observed from Fig. 61, in

which the quantum and classical values of Q, and Qj) are compared.

It has already been pointed out (Chap. II, § 5) that, as the ratio of

wave-length to atomic diameter tends to zero, the total cross-section Q
tends, not to its classical value, but to twice that value. The additional

scattering which gives rise to this doubling is confined to smaller and

smaller angles 6 as the wave-length decreases. The contribution of this

scattering to the viscosity and diffusion cross-sections therefore becomes

less and less important owing to the additional factors, proportional to

6^ for small 6, with which the differential cross-section I{6) has to be

weighted. We therefore find that, unlike Q, both and Qj^ tend

to the classical Kmits as the wave-length decreases. At small values

of 27TrJX there is a considerable departure from classical behaviour

apparent in all these cross-sections. This modifies the temperature

dependence of the viscosity t] at low tenjperatures. According to the
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classical theory, with the rigid sphere model, t] q} T~^ as T 0. With
the quantum theory the variation is more rapid,f

Deviations from classical behaviour are to be expected at tempera-

tures below 50° K in helium and 100° K in hydrogen. Quantal calcula-

tions of the viscosity to be expected for helium have been carried out

by several authors^ on the assumption of different interaction laws

between helium atoms. The usefulness of this technique for determining

the true interaction law may be supplemented by a similar discussion of

the second virial coefficient, the quantum formula§ for which depends

on the same phases which determine the scattering cross-sections. More

observed results are necessary before this programme can be completed.

The total cross-section Q can be measured in principle by molecular

ray methods, but a very high angular resolving power is necessary to

obtain a value independent of the smallest deviation recorded as a

collision. For further details of this work see Massey and Burhop,

Electronic and Ionic Impact Phenomena, Chapter VII.

3.2. Transfer of excitation and of charge in slow collisions

The importance of the transfer of excitation between atoms on col-

lision has already been mentioned at the beginning of this chapter.

The general feature which emerges from the experimental data is that

the probability of this transfer is a maximum when the energy difference

between the two states is zero. The energy difference appears to be

usually more important in determining the probability of the transfer

than the relative velocities or nature of the systems concerned. As an

illustration of this we shall consider the results of a few selected

experiments.

3.21. Quenching of mercury resonance radiation. It is well known
that the presence of a foreign gas in a mercury resonance lamp has the

effect of diminishing the intensity of resonance radiation. This is due

to the deactivation of the excited mercury atoms by collision with

molecules of the foreign gas. From observations of the variation in

intensity of the resonance radiation with different foreign gases present

it is possible to determine the effective cross-sections corresponding to

deactivation of the mercury atoms by the gas molecules. Such a series

of observations was carried out by Zemansky;l| in Fig. 52(a) the relative

f Massey and Mohr, loc. cit.

t Massey and Mohr, Proc, Roy. Soc. A, 144 (1934), 188; Massey and Buckingham,
ibid. A, 168 (1938), 378; 169 (1938), 205; Buckingham, Hamilton, and Massey, ibid. A,

179 (1941), 103; de Boer and Michels, Physica, 6 (1939), 409.

§ Uhlenbeck and Beth, ibid. 3 (1936), 729; Gropper, Phys. Rev. 51 (1937), 1108.

11
Ibid. 36 (1930), 919.
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efficiencies of different gases in producing the transition 2 2 of

the mercury atom, which requires 0*218 volts, are illustrated. The

efficiency is given in terms of the effective cross-section, and is plotted

against the energy of the vibrational level of each gas with energy

nearest to the resonance value 0*218 volts. It is clear that the points

obtained determine a resonance curve of the usual type. Carbon

monoxide alone behaves anomalously, showing that the energy dif-

ference is not the only factor concerned.

f

3.22. Excitation of sodium by excited mercury atoms. Experiments of

a somewhat similar nature were carried out by Beutler and Josephy,J

who irradiated a mixture of sodium and mercury vapours with a mercury

lamp and measured the intensity of the sodium hues with excitation

energies in the neighbourhood of that of the exciting line (wave-number

2537). Allowing for the statistical weight of the terms involved in the

sodium lines, they obtained the curve illustrated in Fig. 52(6) for the

excitation probabihty of the different sodium levels represented as a

function of the energy of the level. A strong maximum is observed at

the resonance point with a subsidiary maximum corresponding to

resonance with the metastable 2 state of mercury.

3.23. The absorption of positive ions. 'IJmladung.' The observed

absorption of slow positive ion beams in gases is due almost entirely to

neutralization by capture of electrons from the gas molecules. A large

number of measurements of the absorption coefficients of ions in gases

have been carried out by various investigators and in all cases the

absorption coefficient is found to be greatest for ions of the same gas;

that is to say, positive ions are absorbed most strongly by gases which

form the same ions by loss of an electron.

The most extensive measurements are due to Wolf,§ and Fig. 52(c)

illustrates clearly, from his results, the resonance character of the

phenomena.

A great number of other examples of this phenomenon are known,
|1

and it is clearly of great importance in chemical kinetics and in spec-

troscopy.

We now consider these phenomena from a theoretical point of view.

t Doubt has recently been thrown on the resonance character of the quenching

process (Laidler, J. Chem. Phya. 10 (1943), 43), as the hydrocarbons quench by chemical

action.

t Zeita.f. Phyaik, 53 (1929), 765.

§ Ann. derPhy8ik,23 (1935), 286 and 627

;

25 (1936), 737 ; 27 (1936), 643 ; 29 (1937), 33

;

30 (1937), 313.

|{
Cf. Massey and Burhop, Electronic cmd Ionic Impact Phenomena^ Chapters VII and

VIII.
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Fig. 52. Illustrating resonance phenomena in collisions between atoms or ions in which
transfer of excitation or of charge is involved.

() Relative efficiencies of various gases in quenching mercury resonance radiation.

() Excitation probabilities of various sodium lines by collisions of the second kind with
mercury atoms excited to the 2^P state. Dotted lines indicate energies of the 2^P
and 2 states of mercury.

(c) Cross-sections for transfer of charge between various ions (of 400 e.V. kinetic energy)

and neutral molecules as a function of the resonance defect AP (AE is taken positive

when the relative kinetic energy is increased by the charge transfer).
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3.3, Theory of resonance effects

In Chap. VIII, § 6, a method of calculation of cross-sections for

transitions between two states in approximate resonance was discussed.

We use the same notation in this section, and denote the initial state

by the suffix 0 and the final state by the suffix n. In the two following

cases it was shown that the problem consists in the solution of two

simultaneous differential equations only. If the states 0 and n are in

approximate resonance, or if the interaction energy terms are small

for all states s and t, the probability of the transition is determined by

the functions F\^ which are proper solutions of the simultaneous

equations

[dr^^ ""

[,dr*

Ui-\- 1
) FI

UonFl

UonFl

^*
0 ,

the component of the incident and elastically scattered wave, has

the asymptotic form

FI) ~ k-^{2l+ l)exp{iij')i'[sin{A:r— |i!7r+7?^)+g'^exp{t(^;r— |Z7r+

F\^ corresponds to an outgoing wave only, having the asymptotic form

Fi k-^{2l+l)g^^exjp(ik^r).

The cross-section for the inelastic collision is then given by

For collisions involving transfer of excitation the form of Uq^ depends

on whether the transitions in the two systems A and B are optically

allowed or not. If they are associated with multipole moments of order

p and q respectively, then, ignoring angular variations,

Uon{r) ajrP+<i+^. (19)

Thus, if both transitions are optically allowed,

Uoni^) <hl^, (
20

)

while, if the transitions are of S S type or involve electron exchange,

the moment vanishes to any order and

(
21

)

It follows that, in many cases, the coupling potential quite

slowly with distance at large distances and will be much larger than

Z7oo or Unn there. Exceptions will be cases such as (21) and also collisions

between ions and atoms, or between two ions, for which or may
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fall off quite slowly with distance. Stueckelbergf has shown that, if a

real crossing-point R exists at which

= 0,

then the maximum cross-section is of order ttR^, On the other hand,

if no such point exists, the critical distance R^ is that for which

and cross-sections of order TrJRf may arise. In view of the long range

of for such cases as (20), it is clear that R^ may often be considerably

greater than R. Stueckelbergt has therefore considered in detail the

cross-section to be expected when Uq^ has the form a/r* for large r.

In these cases the critical distance Rj^ will be so large if the resonance

defect AJE is small, that Uqq and may be ignored there, giving

where jS = ah^l2m. The formula obtained for \q\\^ depends on whether

Z is > or < Zo> where

= 0.

When Hs < e~**)8inV, (22)
fC

a formula of the same form as for the crossing-point case (Chap. VIII,

eq. (77)), but now
'

(23)

where
APU'onL=Ri

2/ = /o+/„+2(/o/„— t/g„)*,

fo.n = K.n-^.i+^)|r^

and Mg is a quantity of order unity which depends only on s. Except

for I cri Iq, will be negligible compared with or /j and we have

S ~ f2(Ai?)(»-i)/«i8i/*, (24)

where Vi is the relative velocity of the colliding systems at the critical

point. Just as for the crossing-points case discussed in Chapter VIII,

adiabatic conditions, corresponding to large S, prevail when the inter-

action is large and the relative velocity small at the critical distance.

For Z > Zq Bom’s approximation may be used to calculate the

interaction being small over the effective range < i? < oo within

which the systems, with the particular relative angular momentum,

t Helv, Phys, Acta, 5 (1932), 370.
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approach. In collisions between atoms both I and will be very large

and it is then found that

. j .j, ^ kn 7T^0cH%
l

k 16 \

where
c, = {ris-i)mras)Y, c, = [r(|.)/r(.-i)]^<»-»

21) (

AEy
Eol

*
f

(25)

The total cross-section may now be calculated approximately, as

00

0

where, for I <lo formula (22) is used and for I > Iq formula (25).

In this way Stueckelberg finds that

^ (26)

f(x) = 8M,x/s (z < 1
),

= {z > 1),

and is illustrated for the case « = 3 in Fig. 53.

Close to resonance we see that

s

In the important case, 8 = 3, the cross-section tends to a constant value

as resonance is approached, and the variation with AE is of true

resonance type. Fig. 54 illustrates the variation of with AE for

8 = 3, taking p = e^ag, m = 10 atomic units, and a velocity correspond-

ing to an energy of 1 e.V. The sharp resonance is obvious, as well as

the large magnitude of the cross-section near resonance.

The variation of with relative velocity for different values of AE
is also of interest. Referring to (26) and Fig. 55 it will be seen that,

for small velocities, the variation will be like v^exp(—a/v), where

a = reaching a maximum of order 7r(j8/A-E')2/3 for a velocity

of order {pAE^)^f^lh, and then falling off as at higher velocities.

Typical examples are illustrated in Fig. 55.

For higher values of 8 the general behaviour is similar except that

the cross-section vanishes in the limit of exact resonance. However, it

reaches a maximum very close to resonance if the relative velocity is

small and falls off rapidly thereafter as the energy defect AE increases.
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charge between two atoms as a function of the

resonance defect AE.

Energy oF relative motion in electron volts

Fig. 55. Variation of cross-section for transfer of excitation with energy of relative

motion for different resonance defects AJ5J. ^ is taken as and m as lOm^, as in Fig. 54.

The maximum cross-section will fall off as s increases owing to the

reduced range of the coupling energy Von-

Electron exchange will normally involve collision between an ion and

an atom or between two ions. In these cases Von falls off much more

rapidly with distance than Voo or and the crossing-point formulae are

applicable. If the collision is between an ion and an atom, ^0 will behave
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asymptotically as where a is the polarizability of the atom. The

crossing point will be given approximately by

Although R may be made as large as one pleases by taking AJE/ small

enough, the rapid fall of with r makes the probability of transfer at

the crossing point very low, as will be seen from (79) Chap. VIII, § 6.2.

The resulting cross-section will not then be of order ttR^ but much
smaller,f It will nevertheless exhibit resonance characteristics similar

to those for the cases discussed above in which s > 3, i.e. a maximum
not at exact resonance but close to it.

For collisions between a positive and negative ion, in which mutual

neutralization occurs by electron transfer, the crossing point may occur

at very large R {== when AE is small, but the cross-section will

normally be very much less than ttR^ owing to the small value of Von at

the crossing point. In this case also the maximum cross-section does

not occur at exact resonance, but may be replaced quite considerably

from it.J

Summarizing we may say that the largest maximum cross-section

(much greater than gas kinetic) and the sharpest resonance should be

expected for transfer of excitation involving optically allowed transi-

tions in both systems. Resonance, with the maximum sHghtly displaced

from the position AE = 0, would be expected in most other cases, but

the maximum cross-section is not Hkely to be nearly as large.

3.4. Passage of positive ions through gases

In this section we consider the collisions of positive ions of energy

greater than, say, 50 volts with gas atoms. The types of coUision which

occur may be classified as follows:

1. Elastic collisions.

2. Collisions resulting in the neutrahzation of the ion by electron

capttire from the gas atoms.

3. Inelastic collisions resulting in excitation or ionization either of

the gas atoms or the incident ions.

The cross-section for elastic collisions must be calculated by the

Method of Partial Cross-sections (Chap. 11, § 1) and is given in terms

t It may indeed be so small that the major contribution comes from a second crossing

point at a much smaller value of R (of order 10~® cm.) where is appreciable.

t Bates and Massey, Phil, Trans, Roy, Soc, 239 (1943), 269.
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of the phase constants by the series

^ F2 (2»+ (27)
n

k is, as usual, equal to 27r/wave-length. A large number of terms of

this series are required (at least 400 for 100 volt protons in helium);

but the summation over a certain range of n may be replaced by an
integral. Use may also be made of the oscillatory nature of sin when
n is small (less than 200 for 100 volt protons in helium). Some cal-

culated values of Q for the collisions of protons with helium and argon

are given in Table III.

TABLE III

Qua
Proton energy

in e.V.

Croaa-aection

in units of rraj

Oas kinetic croaa-aection

in units of TraJ {exptl.)

He 90 3-7 2-6

800 20

A 73 16-4 7-3

650 10-7

It will be seen that these calculated cross-sections do not differ greatly

from the gas-kinetic values; yet experimental determinations! of the

free paths of protons in both helium and argon have indicated much
smaller total cross-sections than the gas-kinetic. However, the reason

for this is clear when the angular distribution of the scattered protons

is considered. This may be calculated by classical methods! except at

very small angles of scattering, and it may be shown that the limiting

value of the angular distribution function l(0) for zero angle of scat-

tering is approximately which is > Q except for very slow ions

(< ^ volt). Combining these results it is found that the scattered

intensity falls off so rapidly with increasing angle of scattering that

only a small fraction of the elastic collisions occurring could be observed

in the experiments cited.

Collisions in which an electron is captured by the ion are usually

inelastic, as the mutual kinetic energy is altered by the collision. In

the special case of exact resonance which occurs, for example, when

a helium positive ion captures an electron from a helium atom, the

collisions are elastic in the sense that the mutual kinetic energy remains

unaltered. It is not strictly correct to assign a cross-section for charge

f Dempster, Phil, Mag. 3 (1927), 115; Ramsauer, Kollath, and Lilienthal, Ann, der

Phya. 8 (1931), 709.

J Cf. Chap. VII, §§ 4, 6 for the proof of this statement.

8M6.67 jj
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transfer in the case of exact resonance, as it is impossible to determine

experimentally whether an ion observed in any given direction is the

incident ion which has been scattered or a struck atom which has lost

an electron. Actually the observations show that large numbers of

positive ions are produced moving in directions nearly perpendicular

to the incident beam.- As we know from experiments in which the

incident ions are distinguishable from atoms which have lost an electron,

that very few ions are directly scattered in such directions, we may
arbitrarily consider that all ions which move in directions making angles

greater than, say, 45° with the direction of incidence, are struck atoms

which have lost one electron, all the remaining ions arising by direct

scattering from the incident beam. Since the observed absorption of,

say, He+ ions in He is mainly due to large angle deviations, we may
say, on the basis of our assumption, that the absorption is mainly due

to charge transfer. To calculate the absorption cross-section we may
then use the formula given in Chap. VIII, § 6.1, for the limiting value

of the probability of an inelastic collision in the case of exact resonance.

This calculation follows on the same lines as that of the elastic cross-

section given earlier in this section, and it is found that the absorbing

cross-section due to transfer of charge is comparable with the gas-

kinetic cross-section, in agreement with the experiments of KaUmann
and B. Rosen.t A more exact theory, which takes account of the

identity of the nuclei (cf. Chap, V) will only modify the form of the

angular distribution of the scattered ions at intermediate angles of

scattering, where maxima and minima will occur due to the interference

of the two types of scattered waves. Since the contribution to the

cross-section arising from these angles is very small, this effect is un-

important, except for precise measurements of angular distributions.

When electron capture requires change of kinetic energy, the theory

of the process must follow on exactly similar lines to that of excitation

and ionization by the ions. Since the velocity of the ions is small com-

pared with the orbital velocities of the atomic electrons, and since there

are few cases where the resonance between initial and final states is so

close as to permit of the consideration of the interaction of these two

states alone, the only method which is satisfactory for the discussion

of these processes is the Method of Perturbed Stationary State Wave
Functions discussed in Chap. VIII, § 7.

This method has been applied to the calculation of the cross-sections

for excitation of the 2 state of helium by protons and for electron

t ZeiU.f, Physik, 64 (1930), 808.
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capture from helium by protons. The impact parameter formulation
of the method has also been applied by Framel to calculate the cross-

section for the excitation of the {ls)®3p*P state of hthium by slow
a-particles. Fig. 56 illustrates his results. For purposes of contrast the
corresponding curve for electron is also included in the figure. The
obvious diflFerence in the calculated behaviour of the two particles is

shown also by the experimental results, both for excitation and
ionization.

Comparison of the theoretical cross-section—velocity curve with the

Fig. 56. Calculated cro.ss-8ection for excitation of the level of lithium by
a-particles.

I. Using perturbed stationary state method in the impact parameter form.
II. Using Born’s approximation.

Inset figure gives the corresponding cross-section for excitation by electrons,

calculated by Bom’s approximation.

corresponding curves for transfer of excitation (Fig. 55) reveals a close

similarity. In both cases the cross-section decreases rapidly from the

maximum as the velocity falls, owing to the approach to adiabatic condi-

tions. The maximum occurs when the relative velocity is comparable
with the orbital velocity of the atomic electrons concerned. The steep-

ness of the fall from the maximum as the velocity decreases is greater

the greater the resonance defect AJS. As a rough approximation the

velocity variation of the cross-section in the near adiabatic region may
be written

(7exp(-—a/v),

where a increases with AJ&. Qualitative evidence in favour of this

dependence on A.B is provided by numerous experiments on excitation

t Massey and Smith, Proc. Roy, Soc, A, 142 (1933), 142.

t Proc. Camb. Phil, Soc. 33 (1937), 116.
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by slow ions. Thus Appleyardf showed that sodium ions with energy

between 300 and 3,000 e.V. can excite mercury atoms (A-EJ = 5 e.V.),

but are not appreciably excited themselves (requiring = 32 e.V.).

Again DopelJ has found that hydrogen atoms with less than 1,000 e.V.

energy can excite potassium and sodium atoms (AJE? == 2 e.V.) quite

strongly, although even when their energy is increased to 20,000 e.V.

there is no indication that they are ever excited themselves by the

collision (requiring /S.E =10 e.V.).

The strong reduction of the cross-section by the approach to adiabatic

conditions is not given adequately by Born’s approximation except in

certain very special circumstances. This is revealed by comparing

curve II of Fig. 56 given by Born’s approximation with that, I, given

by the perturbed stationary state method. Cases where the two methods

agree have been mentioned in § 2.1.

Although there is quahtative agreement between theory and experi-

ment as far as these phenomena are concerned, much remains to be

done yet before even semi-quantitative prediction of cross-sections for

ionization and excitation by slow positive ions can be made. For further

details of existing experimental data and their interpretation the reader

is referred to Massey and Burhop, Electronic and Ionic Impact Pheno^

mena, Chapters VII and VIII.

3.5. Exchange of energy between translational motion and molecular

vibration and rotation

In this section we shall discuss methods by which one may calculate

the probability that a molecule will change its vibrational or rotational

state under impact from another atom. For this purpose we require to

know the interaction energy between the molecule and atom.

The theoretical treatments given at present have been confined to

impacts in which the striking atom moves along the line joining the

nuclei of a diatomic molecule; the vibrational transition probabilities

wiU probably be greatest for such impacts. We need, then, only con-

sider the interaction of the striking atom with one of the atoms of the

molecule (of mass say). A form of the interaction energy which

probably gives a very good approximation near the distance of closest

approach is
(28)

where r is distance between the atom and the striking atom. The
constant a may be determined by comparing (28) with the potentials

t Proc. Roy. Soc. A, 128 (1930), 330.

t Ann. der Ph/y». 16 (1933), 1.
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deduced by Lennard-Jonest from experimental measurements of the

viscosity and thermal conductivity of gases.

If we denote by R the distance between the nuclei of the striking

atom and the centre of gravity of the molecule, and by p the distance

between the vibrating nuclei of the molecule, then (28) may be written

V[Ryp) = (29)

where A =

and Mq is the mass of the other nucleus in the molecule. If we assume

that the vibration is simple harmonic, the vibrational wave functions

are Hermite polynomials. Owing to the fact that the amplitude of the

nuclear vibration is small compared with the length 1 /a, the non-diagonal

matrix elements of V with respect to the vibrational wave functions

are small. The method of Chap. VIII, § 5 (perturbation method with

distorted waves), may thus be used to calculate the transition pro-

babilities with considerable accuracy.

Such calculations have been carried out by ZenerJ using a simplified

field, and by Jackson and Mott§ using the field (29). With the latter

field the following results are obtained for a head-on collision such as

that described. We denote by the probability per collision that

the vibrational quantum number changes from n to m\ is the mass

of the striking atom, the relative velocity before the collision,

afterwards. Then

PritTn

3277^

k

Mc{Ms+Mo)M^^
a^Ms{M^+Ms+Ma)^

where

8inh77g„8inh7rg^

(cosh cosh Trg^)*

M* = M^(Ms+Mc)im,+Ms+Mc),

(m = 7i±l),

and V is the natural frequency of the vibrator. The probability of an

energy change in which n changes by more than 1 is very small, except

for high energies of impact.

The chief interest of this formula is that it shows that exchange of

energy between translation and vibration takes place only with dijBB-

culty. Thus in the one-dimensional collisions of hehum with nitrogen

f R. H. Fowler, Statistical Mechanics, Ch. X, 1929. J Phys, Rev. 37 (1931), 556.

§ Jaokson aoad Mott, Proc. Roy. Soc. A, 137 (1932), 703.
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at room temperature, the probability of deactivation of the molecule

from the first vibrational state is of the order 6x lO""^. It is the very

low probability of exchange of vibrational and translational energy

which accounts for the dispersion and absorption of high frequency

sound in various gases.

f

Similar methods may be applied to the consideration of the transfer

of excitation of vibration between two molecules on impact. It is found

then that, even in the case of exact resonance, the probability of transfer

of vibrational energ}^ may be very small. The resonance cross-section

increases with the reduced mass of the two molecules and the kinetic

energy of relative motion, while the resonance effect is sharpest for

heavy molecules.

RiceJ has applied the theory to the consideration of the activa-

tion of various complex molecules by impact with similar molecules,

with inert gas atoms, and with hydrogen. He finds that hydrogen

is as efficient in activation as these molecules, and is much more so

than the inert gases. This is in general agreement with the chemical

evidence.

The method has also been applied successfully to the theory of the

accommodation coefficient of a solid surface for gas atoms. § This

coefficient is determined by the rate of interchange of translational

energy ofthe incident atoms with energy of vibration of the solid lattice.

The theory of the excitation of rotational motion is less well de-

veloped, but it appears that transfer of energy between translation and

rotation can take place relatively easily.
||

For a detailed account

of the various aspects of vibrational and rotational energy exchange

between molecules reference should be made to the review articles by
Hiedemanntt, Richardsjf Oldenburg and Frost§§, and to Chapter VII

of Electronic and Ionic Impact Phenomena by Massey and Burhop.

3.6. Chemical reaction rates

Although the combination of two atoms Bio form a molecule AB,
giving up their surplus energy to a third atom (7, can be regarded as

the inverse of a process of excitation of a continuous vibrational state

of the molecule ABhy the atom (7, no attempt has yet been made to

t Cf. § 1.6 of this chapter. J Chemical Reviews, 10 (1932), 126.

§ Jackson and Mott, Proc. Roy. Soc. A, 137 (1932), 703; Jackson and Howarth, ibid.

142 (1933), 447; 152 (1934), 516.

II
Zener, Phys. Rev. 37 (1931), 656 ;

Roy and Rose, Proc, Roy. Soc, A, 149 (1936), 611.

tt Ergebniese d. Exakt. Naturtviss. 14 (1935), 201.

it Rev. Mod. Phys. 11 (1939), 36. §§ Chem. Rev. 20 (1937), 99.
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apply the technique described in the preceding section to calculate the

reaction rate. The only calculations of chemical reaction rates which

have been carried out have been of a statistical character such as the

transition state method (Chap. VIII, § 8.4). Tor an account of these

theorie.s and their results the reader is referred to The Theory of Rate

Processes, by Glasstone, Laidler, and Eyring.



XIII

NUCLEAR COLLISIONS

Since the first edition of this book was written there has been a great

advance in nuclear physics. The availability of strong sources of

neutrons and of radioisotopes from the controlled operation of chain

reactions in piles will undoubtedly lead to even more rapid progress in

the near future. It is not our intention in this chapter to present a

comprehensive survey of the information on nuclear collisions available

at the time of writing, but rather to illustrate the main aspects of the

application of the theory developed in previous chapters (particularly

Chapters II, III, and VIII) to these phenomena.

A convenient classification of nuclear collisions is to distinguish those

which may be treated by the one-body approximation from those which

can only be interpreted by means of the many-body method of the

collision complex (Chap. VIII, §8). The latter include all collisions

except those between very light nuclei. Special interest attaches, how-

ever, to the study of the impacts of the lightest nuclei, particularly

neutrons and protons, for it is largely from such study that we can hope

to obtain a detailed knowledge of the fundamental forces between

nucleons. Accordingly we first discuss the coUisions between the simplest

nuclei from this point of view.

Collisions which can be adequately described only in terms of the

collision complex or compound nucleus may, in turn, be distinguished

by the extent to which they involve resonance phenomena. The be-

haviour of slow neutrons in nuclear collisions reveals such effects most

clearly for the medium and heavy nuclei; whereas protons and a-particles

have so far been the most effective projectiles for investigating resonance

in light nuclei. Section 2 is devoted to a discussion of these effects.

Resonance phenomena in collisions with medium and heavy nuclei by

no means exhaust the range of slow neutron physics. The collisions of

slow neutrons with bound protons, their diffraction by crystals, and

their polarization by scattering from a ferromagnet (due to the magnetic

interaction with the atomic electrons) are all phenomena of great impor-

tance and are discussed in §§ 3 and 4.

Collisions of fast particles with medium and heavy nuclei exemplify

cases in which the resonance levels of the complex overlap (Chap. VIII,

§ 8.3) and are briefly discussed in § 5.

Nuclear fission is discussed in the final § 6 as a further example of the
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application of the theory to the understanding of nuclear collisions and

the identification of reactions arising from different isotopic constituents.

1. The simplest nuclear collisions and the law of force between

nucleons

1 . 1 . The elastic collisions of neutrons and protons

The simplest collision phenomena involving nucleons are those be-

tween a neutron and a proton and between two protons. They may be

discussed essentially as one-body problems and are of major importance

for the determination of the law of force between nucleons.

We consider first the low energy limit of the cross-section for neutron-

proton scattering. This will come almost completely from the scattering

of neutrons with relative angular momentum equal to zero. We may
represent the force effective in scattering these neutrons by a potential

w^ell of range a and depth kl h^jM, where M is the neutron mass. From
experiment it has been shown that, in the relative coordinate system,

the angular distribution of the scattering of neutrons with energies up

to 7 M.e.V. or more is still isotropic, and hence must involve only

neutrons with Z = 0. Since the reduced wave-length A/27r of the relative

motion of a 7 M.e.V. neutron and a proton is 3x 10~^® cm., it follows

that the range cannot be much greater than this. Assuming, as would

seem reasonable, that the same potential well is responsible for the

binding energy Eq of the deuteron, the depth constant of the well

may be determined from the relation

tan{(i:g—

=

—{kl—K^yjK, (1)

where == MEQjh?, It is then found that k^ must be large compared

with K. We may therefore apply formula (33) of Chapter II to give for

the low energy cross-section

Q - in{l+Ka)l{k^+K\ (2)

where k is the wave number of the relative motion. Ignoring #ca com-

pared with unity, this formula gives for the low velocity limit of the

cross-section a value of 2-4 x 10~^^ cm.^, whereas the observed value!

is about 21 X lO'^^ cm.^ Only a small part of this discrepancy can be

attributed to neglect of /ca, which cannot be much greater than unity.

In order to remove this discrepancy it was suggested by Wigner that

t Honstein, Phya. Rev. 59 (1941), 489; Marshall, ibid. 70 (1946), 107; Havens,
Bainwater, and Wu, BtiU. Am. Phya, Soc. 23 (1948), 7 ; McDaniel and Jones, quoted by
Blatt, Phya. Rev. 74 (1948), 92.
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the depth of the well depends on the total spin. As the ground state

of the deuteron is a triplet we would then have, ignoring the finite range,

where being the magnitude of the binding energy of

the singlet state. To fit the experimental cross-section as k tends to

zero, El must be taken equal to 50,000 e.V. It is not possible to decide,

however, from the scattering data, whether the level is real or virtual.

This may be done from a study of the scattering of slow neutrons by

molecular hydrogen (§ 3.22) and it is found to be vii*tual. The depth of

the potential well for the singlet state can now be determined.

These considerations remain valid no matter what the detailed form

of the interaction may be. It is sufficient that the range be short and

the binding energy small compared with the depth. If the interaction

is written F = Cfir/a), (
4

)

involving two parameters C and a, the known binding energies of the

two-body system in the and states determine the relation between

C and a for a given functional form/{r/a).

To obtain information about the interaction in states with non-

vanishing angular momentum it is necessary to observe the scattering

of neutrons of reduced wave-length shorter than the range of the

interaction. Very considerable interest is attached to this problem for

the following reasons.

The binding energy of heavy nuclei is known to be approximately

proportional to the number A of nuclear particles. If the interaction

between these particles were represented by a formula such as (4),

independent of their relative angular momenta, the binding energy

would increase as This conclusion would be avoided if the function

/(r/a) became repulsive at short distances or if repulsive many-body

forces occur. As an alternative to these complicated explanations Heisen-

bergf suggested that the interaction energy should contain as factor an

operatorifwhich interchanges thepositions and spins ofthe two particles.

MajoranaJ then showed that a further operator M, which exchanges

position coordinates only, must be introduced in order that the binding

energy per particle should increase up to He* and not decline after

The simplest interaction of this ^exchange’ type is then

[{l-g)M+gH]Vir). (5)

t Zeite.f. Pkyeik, 77 (1932), 1. J Ibid. 82 (1933), 137.
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g is here a parameter. With this form the interaction is equal in strength

for all states of given multiplicity, but is of opposite sign for states of

odd and even angular momentum. For singlet states the interaction is

(1—2^) times as great as for triplet states, so the value of g may be

chosen to give agreement with the virtual binding energy of the state

of the deuteron.

By contrast we may take an ‘ordinary’ interaction

[{l^g)l+gMH]V{rY (6)

While this gives the same ratio, (1—2^), as (5) for the interaction in

corresponding singlet and triplet states, the interaction remains the

same in sign as well as magnitude for all states of given multiplicity.

This would lead to the so-called absence of saturation for heavy nuclei,

i.e. to the proportionality of binding energy to

A choice between a predominantly exchange type interaction (6) and

an ordinary one such as (6) can be made if the sign of the phase shifts

for the p-wave (Z = 1) can be determined. With the ordinary force of

type (6), these phases will be positive; but with the exchange force (5)

they are negative. Observation of the sense of the first departure from

isotropy of the angular distribution in relative coordinates would enable

the choice to be made. The energy at which this deviation first reaches

a certain magnitude will be somewhat greater with exchange type forces

because, with a repulsive potential, the ^-phases increase less rapidly

initially than with an attractive potential. As the range of the forces

can be estimated from the binding energies of the triton and from

proton-proton scattering, the extent of the departure from isotropy can

be estimated for both types of force.f Fig. 57 illustrates the angular

distributions, in relative coordinates, for 13-8 and 20-8 M.e.V. neutrons,

calculated on the assumption of two forms of the function /(r/a) with

the alternative ‘ordinary’ and ‘exchange’ operators.

As the neutron energy increases still further, the influence of higher

angular momenta becomes important and the distinction between

exchange and ordinary forces is no longer so clear. Fig. 68 illustrates

the behaviour of the ratio I[7T)jI[\7r) of the intensity scattered at 180°

to that at 90° as a function of neutron energy for the same forces as

are assumed in Fig. 57.

At sufficiently high energies for Bom’s approximation to be valid

there is again a clear distinction between the predictions for the two

t Buckingham and Massey, Proc. Roy. Soc. A, 163 (1937), 281 ; Rsumsey, Proc. Roy.
Soc. A, 191 (1947), 195; Blatt, Phya. Rev. 74 (1948), 92.



Fio. 57. Theoretical angular distributions in the centre of mass system for scattering

of neutrons by protons. Curves I, II refer to 13*3 and 20-8 M.e.V. neutrons respectively.

The scale has been adjusted so that /(!«)— 1 in all cases.

Fia. 58. Theoretical asymmetry ratio I{TT)II{\n) for the scattering of neutrons by
protons assuming different laws of force.

assuming exchange forces. assuming ordinary forces.

(a) Spherical well interaction (b) Exponential interaction

V[r) == —17 M.e.V. (a < 2-8 x ICT'® cm.) V(r) = — C’exp( — 2r/o),

== 0 (a > 2-8 X 10“*»* cm.) (7 = 122 M.e.V. (a = 1-73 x lO-i® cm.)
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types of force. The differential cross-section is given, according to

eq. (5) of Chapter VII, by

4.-2 Tlf2
1

r 2

1(6) = dr' i{3+(l^2g)% (7)

where Hq . n = cos 6.

With ordinary forces the negative sign is to be taken in the second

exponent, whereas the effect of the

exchange operators is to reverse this

sign. The maximum value of 1(6)

will occur when |inQ=Fi;n| is small

for the respective cases, or, in terms

of the angle 6, at small 6 with ordi-

nary forces, for 6 with exchange

forces. The struck protons will be ^
mainly projected at nearly 90° to the ^
direction of the incident neutrons in ^
the former case and in the direction ^
of incidence in the latter. The effect

is very similar to charge exchange in
^

the colhsion ofan ion with a neutral

atom of the same kind (Chap. XII,

§ 3.4). Fig. 59 illustrates the effect

for 83 M.e.V. neutrons and the same

interactions as in Figs. 57 and 58.
°

It is, of course, clear that there

exist many other possibihties as far f
Theoretical angular distribution in

as the combination of exchange and SSM.e.V. neutrons byprotons, assumingthe

other operators is concerned. The spherical well interaction as in Fig. 67(a).

operator combinations which occur
assuming exchange forces.

•r assummg ordinary forces.

in the meson theories have been

studied,t as also the effect of non-central interactions! of the type

required by the existence of the quadrupole moment of the deuteron.

Although these various possibilities give results which differ in detail,

it is still possible to distinguish the forces as predominantly of ordinary

or exchange type, affecting the scattering, at least quahtatively, in the

ways described above.

t Hulthdn, Arkiv. fdr Mat., Ast, o. Fya. 29 (1943), 1; 30 (1943), 1; 31 (1944), 1;

Ramsey, Proc. Roy. Soc. A, 191 (1947), 195.

J Rarita and Schwinger, Phys. Rev. 59 (1941), 436; ibid. 666; Hepner and Peierls,

Proc. Roy. Soc. A, 181 (1943), 43; Hu and Massey, Nature 160 (1947), 794.

Angle oF scattering (c.m. system)
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At the time of writing the experimental evidence derived from the

scattering of neutrons of a few M.e.V. energy has failed to provide

decisive evidence for or against the exchange character of the funda-

mental nuclear interaction. Recently,! however, investigations have

been made of the projection of protons by 100 M.e.V. neutrons stripped

from 200 M.e.V. deuterons generated by the 184 inch cyclotron at

Berkeley. Although detailed interpretation of the results is difficult,!

it is already clear that more protons are projected in the direction of

incidence of the neutrons than would be so if the interaction were of

the ordinary force type (6).

1.2. The scattering of protons by protons

The measurement of the intensity of scattering of protons by protons

can be carried out with greater precision than that of neutron-proton

scattering. It has the disadvantage of yielding information only on the

interaction in states which are antisymmetric with respect to inter-

charge of the particles.

According to the discussion in Chap. V, § 5, the effective cross-section

for the scattering of protons of velocity v through an angle 6 by station-

ary protons is given by

/(©) dco = {3|/(20)-/(7r~2©)|2+|/(20)+/(7r+2©)12}cos0 do;, (8)

where f{0) =^2 l)(e2’'’7— l)P^(cos d).

7j^ is such that, if Vn{r)-\-€^/r is the interaction between protons with

n units of angular momentum, the asymptotic form of the proper

solution of the equation

47rW„, ' n{n+l)

M ' r

is sin{A:r—alog 2kr‘-ln7T+rj^), (10)

where k == nMvjh, a = e^lhv, M being the mass of a proton.

We may write ( 1 1

)

wherein (= argr(l+^*a+7i)
)
is the phase shift which would be produced

in the absence of the potential VJf), so that

/(«) (
12

)

t Hadley, Kelly, Leith, Segr^, Wiegand, and York, Phya, Eev, 72 (1948), 1114,

X For referencee see footnote p. 349.

On = 0, (9)
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f^(0) is the value obtained for the scattering by the Coulomb repulsion

alone, viz.

W) = ^cosec2
^0 exp[—ialog2sin40+2i^o+H- (1^)

Using (12) and (13), the ratio R of the scattering to that by the

Coulomb field alone may be expressed in terms of the phases k^. For

low energy protons only Kq will be important. In that case

i?=1+4/7„ (14)

where 7^, the contribution from the Coulomb field, is given by

Ic = —— {cosec^0+sec^0— cos(alogtan20)cosec20sec20}, (15)

and 7^, the anomalous scattering, by

8^4 — ——---{cosec^0 co8(a log 2 sin^0 /Cq)

+

In particular, at an angle of 45°,

+sec^cos(c3tlog2cos2 0+^o)} •

R = I
^^^^0

I

The anomalous scattering of protons by protons was first observed

by Whitest and by Tuve, Heydenburg, and Hafstad.J This early

work indicated the existence of a short-range attraction. This was

confirmed by the extensive measurements of Herb, Kerst, Parkinson,

and Plain§ which were analysed in detail by Breit, Thaxton, and

Eisenbud.il The experiments covered an energy range from 860 to

2,392 k.e.V. and an angular range from 30° to 90° in the centre of mass

system. At each energy a single-phase parameter kq could be found

which, on substitution in (16), gave a good represen^tion of the ob-

served scattering over the angular range covered. The parameter was

positive, showing the anomalous force to be attractive. As no higher-

order phases such as were required to fit the observations it is clear

that the force, like that between neutron and proton, is of short range.

Breit, Thaxton, and Eisenbudff assumed that the anomalous inter-

action could be written in the form (4) and, taking definite forms for

the ‘shape* function /(r/a), attempted to derive information about the

t Phya, Rev. 49 (1936), 309. J Ibid. p. 432. § Ibid. 55 (1939), 998.

II
Ibid. p. 1018.

ft Loo. cit. See also Hoisington, Share, and Breit, Phya. Rev. 56 (1939), 884.
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details of the interaction from the derived phases kq. They found that,

for the shapes assumed, the range could be chosen to reproduce approxi-

mately the variation of kq with energy. The important result emerged

that, for the same assumed shape of interaction, the anomalous proton-

proton force is very nearly equal in strength to the force between a

neutron and proton in a state.

Recent work,t which has extended the energy range up to 14*5 M.e.V.,

has confirmed these results. Fig. 60 illustrates the comparison of the

Fig. 60. Comparison of phase angle kq derived from observations of proton-proton
scattering (indicated by X) with that calculated (full line curve) on the assumption of
an anomalous interaction:

V{r) = -U (r< a)

= 0 (r > a),

with C — 10*5 M.e.V. and a = 2-8 X 10“^^ cm.

phase KQy given by taking the anomalous proton-proton interaction to

be of spherical well form with suitable range and depth, with that

derived from the experimental results.

There is still doubt as to how close the anomalous interaction between

two protons in an S state approaches the neutron-proton inter-

action, but the agreement is certainly good. At the time of writing

there is no definite evidence of any contribution from phases of higher

order. Just as for neutron-proton collisions the determination of the

t (Experimental): Heydenburg, Hafstad, and Tuve, Phye. Rev. 56 (1939), 1078;
Kagan, Kanne, and Taschek, ibid. 60 (1941), 628; May and Powell, Proc. Roy. Soc.

A, 90 (1947), 170; Wilson, Phys. Rev. 71 (1947), 384; Wilson and Creutz, ibid. p. 339;
Wilson, Lofgren, Richardson, Wright, and Shankland, ibid. p. 660 ; Deamley, Oxley, and
Perry, ibid. 73 (1948), 1290; Blair, Freier, Lampi, Sleator, and Williams, ibid. 74 (1948),

663. (Theoretical): lliaxton and Hoisington, ibid. 66 (1939), 1194; Breit, Kittel, and
Thaxton, ibid. 57 (1940), 266; Peierls and Preston, ibid. 72 (1947), 260; Foldy, ibid. p.
731 ; Reunsey, Proc, Roy, Soc, A, 194 (1948), 228; Breit, Broyles, and Hall, Phys, Rev,

73 (1948), 869.
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sign of the phase is important, because it will depend on whether the

interaction is of exchange type or not.

1.3. The elastic scattering of neutrons and protons by deuterons

The only other elastic scattering problems involving nucleons which
are amenable to detailed calculation are those in which neutrons or

protons interact with deuterons. Even in this case the problem is

complex and the accuracy of the results rather difficult to estimate.

The most extensive calculations have been carried out by Buckingham
and Massey.f They assumed the fundamental interaction between

nuclei to be given by a potential function

V{r) -
with C ~ 242 a — 1-73 x 10“^^ cm. (as illustrated in Figs. 57, 58),

associated either with an operator of ordinary or exchange type. This

function gives good agreementj with the binding energy of H^. With
these interactions they solved the scattering problem to the same
approximation as that used by Morse and Allis for the scattering of

slow electrons by helium allowing for exchange (Chap. X, § 6). Good
agreement with the observed§ intensity and angular distribution

of scattered protons with 1*85 M.e.V. incident energy was found,|l

particularly if the interaction is taken to be of exchange type. At
these energies the anomalous (non-Coulomb) scattering is large and

involves both kq and phases. For neutrons with energies ranging

from thermal to 7 M.e.V. the agreement with the observed total cross-

sectiontt is also quite good when exchange forces are assumed, particu-

larly in view of the experimental uncertainties.

The chief doubt as to the accuracy of the theory concerns the impor-

tance of polarization effects arising from the distortion of the deuteron

by the incident particle. As the wave function T(ri— Fg, r^— Tg) used

to describe the scattering has the correct symmetry in the coordinates

Fi, Fg, Fg of the three particles, it does include some contributions from

functions <^(ri— Fg) which represent states of a deuteron other than the

ground state. The importance of terms not included in this way is not

yet clear.

t Proc. Roy. Soc. A, 179 (1941), 123; Phys. Rev. 71 (1947), 558; ibid. 73 (1948), 260.

For scattering at liigh energies see Wu and Aslikin, Phys, Rev, 73 (1948), 986; Chew,

ibid. 74 (1948), 809.

X Present and Rarita, ibid. 51 (1937), 788.

§ Sherr, Blair, Kratz, Bailey, and Taschek, ibid. 72 (1947), 662.

II
Buckingham and Massey, loc. cit; Critchfield, Phys, Rev, 73 (1948), 1.

tt Aoki, Proc, Phys, Math, Soc, Japan, 21 (1939), 232 ; Ageno, Amaldi, Bocciarelli, and

Trabacchi, II Nuov, Cimento, 9 (1943), 1; Phys, Rev. 71 (1947), 20; Nuckolls, Bailey,

Bennett, Bergstrahl, Richards, and WUliams, ibid. 70 (1946), 806.

8595.67 X
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2. Many-body resonance phenomena in nuclear collisions

We now consider phenomena in which the one-body approximation

is no longer valid. This is so for collisions of all but the lightest nuclei.

For such cases the method of the collision complex, or compound
nucleus, must be used. In Chapter VIII we have distinguished two

important cases, those in which the level spacing in the complex is

greater than the level widths and those in which the levels overlap.

It is only in the former case that resonance effects can be expected.

From their study it is possible, not only to establish the correctness of

the theoretical interpretation, but also to obtain valuable information

about the energy-level systems of highly excited nuclei and the relative

importance of processes contributing to the level widths. Less detailed

information is forthcoming from the cases in which the levels overlap.

We shall first discuss certain resonance reactions to illustrate the

various possibilities and results obtained. Resonance phenomena asso-

ciated with medium and heavy nuclei have been studied almost

exclusively by use of slow neutrons as bombarding particles. In these

nuclei the level spacing is much closer for a given energy of excitation

than for light nuclei (see § 2.1). It is therefore necessary to keep the

excitation as low as possible in order that the spacing should remain

larger than the level widths. This hmits us to slow particles. Charged

particles are therefore excluded because of their inability to penetrate

the high potential barrier.

On the other hand, resonance effects in light nuclei have usually been

studied using charged particles. The reason for this is that the level

spacings are relatively much greater (see § 2.1), so that neutrons with

energies of the order of 10® to 10® e.V. are required. Neutron sources

with controllable energy in this range are only now becoming reacUly

available, whereas sources of charged particles, such as protons and

a-particles, with energies covering this range have been available for

some years. For light nuclei the Coulomb potential barrier is low

enough to allow the entry of such particles. Up to the present the

main information on resonance in light nuclei has come from the study

of disintegration by a-particles, radiative capture of protons, and elastic

scattering of a-particles and of protons. The information is less detailed

than that provided from the investigations of slow neutrons.

In interpreting resonance phenomena the ‘one-lever formula of

Chapter VIII (130) for a rearrangement collision and (132) for elastic

scattering are assumed. If it is necessary to include the effect of more

than one resonance level the number of unknown constants is, in most
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cases, so considerable as to render the formulae useless. It does, however,

appear that for many reactions the one-level formula is adequate.

Although in discussing the method of the collision complex in Chap.

VIII, § 8, we made no explicit mention of the possibility of electro-

magnetic radiation, it is clear that it may be taken into account by
introducing an appropriate partial level width as will be done in the

discussion below.

2.1. Theoretical level spacing in compound nuclei

Although it is beyond the scope of this book to discuss in detail the

way in which theoretical estimates of level spacings in compound nuclei

have been derived, we summarize here the main results obtained. They
provide a qualitative description of the level distribution.

For the light nuclei the best theoretical model seems to be the free

particle model! as modified by BardeenJ to allow for exchange forces.

The nucleus is treated as a mixture of two gases, of neutrons and

protons respectively, obe3fing the Fermi-Dirac statistics and confined

within a potential box. With exchange forces the effective depth of

this box depends on the wave number of the particle concerned, § and

this is the effect allowed for by Bardeen. Applying the methods of

statistical mechanics in the usual way the level spacing comes out to be

D = 3xlO«x4e-^e.V., (17)

where, in terms ofthe mass numberA and excitation energy U in M.e.V.,

X = (^i7/4-36)* (18)

and the nuclear radius R has been taken as T48^^^^X 10~^® cm.||

For medium and heavy nuclei the best approximation is probably the

liquid drop model suggested by Bohr and Kalckar.f! If the contribu-

tion from dilatational waves is ignored and the same nuclear radius

taken as for (18),!! i® found that

Z) = 6-1 X 10M-'i/’f7^/«exp{-0*65^*/7;74/7} e.V. (19)

Table I gives some typical values according to each formula.

•f
Bethe, Phys. Rev. 50 (1936), 336, and Rev. Mod. Phys. 9 (1937), 79; Oppenheimer

and Serbor, Phys. Rev. 50 (1936), 391 ; see also Margenau, ibid, 59 (1941), 627.

t Ibid. 51 (1937), 799.

§ van Vleck, ibid. 48 (1935), 367.

II
Derived from the radii of radioactive nuclei, x is proportional to the nuclear radius,

tt See Bethe. Rev. Mod. Phys. 9 (1937), 79.

Jt In (19) the exponent is proportional to the 6/7th power of the nuclear radius, the

outside factor to the — 3/7th power.
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TABLE I

Mass
num-
ber

Level spacing {in e. F.) for different excitation energies

() According to formula (17)

() According to formula 09)

Typical excitation energies

{M.e. V.) from capture of

Slow
neutrons

ct-par-

tides of

2 M.e.V.

Deuter-

ons of 2

M.e.V.

(7=5 M.e.V.

(a) (&)

(7 = 10 M.e.V.

(a) (b)

(7 = 15 M.e.V.

(a) (5)

(7 = 20 M.e.V.

(a) (6)

10 — 4-6x]0» — 1-4x10® — 5-1x10* 7-SxlO* 2-4x10* 9-3 11 18

20 — 2-2 X 10® 7-3x10* 4-9x10* 3-6x10* 1-1x10* 1-7x10* 4-2x10* 9-5 12 19

50 — 6-6x10* 8-7x10® 7-1x10* 1-8x10® 1-2x10* 4-2x10* 2-0x10* 9-1

100 8-7 X 10* 1-6x10* 4-3x10* 1-1x10* 3x10* 1-3x10* 320 18 8-2

200 4-2x10* 3-6xl0» 320 128 6 8-2 0-17 0-7 6-9

It will be seen from comparison with the level spacings deduced from

experiment (see §§ 2.22, 2.34) that the theoretical spacings are too large.

The sensitiveness of either theoretical expression to the numerical value

of the exponent involved is such that good agreement could hardly be

expected. On the other hand, both formulae contain the important

feature that the spacing decreases exponentially as the mass number A
and excitation energy U increase.

2.2. Resonance phenomena in medium and heaxry nuclei involving slow

neutrons

The experimental researches, from which slow neutron physics has

developed, have been mainly concerned with the behaviour of neutrons

with energies ranging from a fraction of an electron volt to some

hundreds of electron volts or so. Such neutrons have insufficient energy

to excite a nucleus in an inelastic collision and possess wave-lengths

considerably greater than nuclear dimensions (the wave-length of a

neutron with energy V e.V. is 2*6 x cm.). As a result the possi-

bilities are limited to an extent which assists theoretical interpretation

and prediction.

Following the method of the collision complex we regard the collision

of a slow neutron with a nucleus as first producing a complex, the com-

pound nucleus, which breaks up again with release of the surplus energy.

There are five ways in which the break up can occur:

() The neutron may be re-emitted with its original energy. In this

case the collision will be an elastic one.

() Gamma radiation may be emitted, the collision being then one

of radiative capture.

(c) An a-particle may be emitted.

{d) A proton may be emitted.

(e) The complex may divide into comparable fragments, i.e. nuclear

fission may take place.
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For energetic reasons nuclear fission due to slow neutrons is confined

to impacts with a limited number of heavy nuclei. Some further dis-

cussion of fission will be given in § 6. It is also for energetic reasons

that the emission of protons or a-particles is confined to a limited

number of processes involving light nuclei. In general, then, a slow

neutron impact results in either elastic scattering of the neutron or its

capture accompanied by emission of radiation. We shall therefore

confine ourselves in the first instance to collisions of this type.

2.21. Application of the one-level forynula. If we suppose that the

principal effects in slow neutron colhsions arise from a single resonance

level of the compound nucleus, we may apply formula (135) of § 8.1,

Chap. VIII, to give, for the capture cross-section

The only way the compound nucleus can break up is by re-emission of

a neutron with its initial energy or by emission of radiation. I], are

the corresponding partial level widths, Ej^ is the resonance energy, E
the neutron energy, and k its wave number. The factor |{l±l/(2«§+l)}

arises if the struck nucleus has s units of spin, the ± sign depending

on whether the angular momentum quantum number of the resonance

level of the complex is

We find similarly for the elastic scattering

\

(
20

)

2*2{(^±2s+i)
• 2ikR-\- +

+

the upper signs being taken when the angular momentum quantum

number of the resonance level is 5-f the lower when it is 5—^. In

deriving this result it is assumed that kR is small, R being the nuclear

radius.

We first note certain general features of these formulae. For neutron

energies near Ej^ the variation of with energy will be of the typical

resonance type, being sharper the smaller the total width P (= P^-fP^^).

There are two other characteristic types of energy variation which arise

under certain conditions. It was shown in § 8.22, Chap. VIII, that P^

is at first proportional to the neutron velocity v. Hence for low velocities

will vary hke provided the denominator of (20) varies only slightly

with E, This will be the case if either E^^ or P is much greater than E,
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a condition which, as we shall see, is most easily satisfied for light nuclei

which have broad levels widely spaced.

The remaining possibility is that the resonance energy be negative.

In that case will show a monotonic decrease with increasing neutron

energy, first as and finally as

When the conditions are such that the capture cross-section is varying

as E~^, the scattering cross-section will be independent of E as both

terms inside the brackets in
(
21

)
will vary as E, Under these conditions

the total cross-section will be of the form where the first term

results from radiative capture, the second from elastic scattering, and

qg being constants.

The capture cross-section is determined, when the spin factor

{1±1/(25+1)} is known, by the resonance energy Ej^ and the partial

widths r^, r^. Writing
/ jp\i

r„ = (22)

where is the neutron width at resonance, we have for the cross-

section at exact resonance,

Q?
r

(
23

)inmE^ (r«-hr,)2\

The ratio r,.r^/(rj+ry)2 may therefore be determined from observa-

tions of and Ej^, It is also possible, by observing the variation of

with E, to measure r,.+ r^ directly from the width of the resonance.

This gives the values of the sum and of the product of and F^, so

that the pair of values which the partial widths must have is determined

except for the decision as to which is the larger. To decide this, recourse

must be had to observation of elastic Sv^attering. The resonance con-

tribution to this cross-section is F^/F^, where Q^, is the capture cross-

section, and will be greater or smaller than according as the neutron

or radiation width is the greater. Except for light elements IJ. is found

to be much larger than F^.

In most cases the spin factor is not known and ambiguity is intro-

duced by the presence of more than one isotope in the absorbing

material. Furthermore, in analysing experimental results care must be

taken that the observed resonance is not largely due to so-called

‘Doppler’ broadening—the effect of the thermal motion of the struck

nuclei. This contributesf an apparent level width A, where

A = 2(mEj^KTIM)i,

t Bethe. Rev, Mod. Phya. 9 (1937), 140.
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m being the mass of a neutron, ikf of a nucleus, T the temperature of the

material containing the nuclei concerned, and k is Boltzmann’s constant.

2.22. Experimental results. In recent years there have been con-

siderable advances in technique which have made practicable much
more detailed studies of slow neutron

cross-sections. We shall content ourselves
^ _ A

here with choosing illustrations from this i i

recent work. For the earlier work, which 'e ^ ^ Li
often involved use of indirect methods, the ^ i I

reader is referred to H. Bethe, Reviews c i \

of Modern Physics, 9 (1937), Chap. X.
J \

The availability ofstrongneutronsources "2 \

from fission piles has made it possible to g ^ _
V

obtain monochromatic beams of slow V

neutrons by Bragg reflexion at a suitable ^

angle from a crystal such as LiF. With —

—

these beams available the observations Neutron energy

required for the analysis given above may
,

. Fig. 61. Observed total absorption
be obtained. cross-section of cadmium towards

A further method which has proved slow neutrons.

very useful is that of the modulated neutron source first introduced

by Alvarezf and by Fertel, Gibbs, Moon, Thomson, and Wynn-
Williams.} By means of a discriminating amplifier or similar device it

is possible to select for observation only those neutrons which arrive

at the detecting system within a chosen time interval since the last

burst of neutrons was released from the source, i.e. to select neutrons

with a given velocity range. This method enables the resonance energies

to be determined and also the product but is not yet of suffi-

ciently high resolution to determine itself. In the region in

which Qc behaves like E~^ the method may be used to determine

and q,.

One of the most important elements from the point ofview ofneutron

absorption is cadmium. This is because it strongly absorbs neutrons of

ordinary thermal energy. Information about the constants of the

excited complex formed on capture of a slow neutron by cadmium is

more definite than for any other element.

Fig. 61 illustrates the variation with energy of the total cross-section

of cadmium obtained by Sawyer, WoUan, Bernstein, and Peterson§

t Phys. Rev. 54 (1938), 609.

t Proc. Roy. Soc. A, 175 (1940), 316. § Phys. Rev. 72 (1947), 109.
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using neutrons diffracted by crystals. The resonance character of

the absorption is clear, and it is found that the cross-section is well

represented by the formula (20) with = 7-25X lO-^^ cm.^,

= 0-178 e.V., and F = 0-110 e.V. These values are in very good

agreement with those obtained recently by other observers*!

It has been shown by Moyer, Peters, and SchmidtJ that the isotope

responsible for the strong absorption is Cd^^^ whose abundance per-

centage in the natural element is 12-3 per cent. The spin quantum

number of this isotope is Dunning, Pegram, Fink, and Mitchell§

showed that the elastic cross-section is not greater than 1 per cent, of

the total. Finally, measurements by Berman|| have placed the value

of the elastic scattering cross-section as 40Ht:15X 10~^^ cm.^

From these results it is possible to assign the separate values 0-11

and 0-60 X 10“^ e.V, to the partial widths F^. and F^ respectively and to

decide that the angular momentum quantum number of the resonance

level responsible is 1 and not 0.

Data as complete as for cadmium is not available for other elements.

Table II summarizes the results of a number of recent measurements

for different elements, ft These results are analysed as far as possible,

making, if necessary, plausible assumptions as to the isotope responsible

and taking the spin factor {1± 1
/(25+ 1)} as unity. It will be noted that

europium, dysprosium, and mercury aU exhibit a resonance level with

small negative energy.

In all cases the compound nucleus formed by neutron capture has an

excitation energy of the order 7-9 X 10® e.V. From the distribution of

the resonance energies it is possible to obtain some idea of the level

separation for this excitation. A specially interesting case is that of

tantalum, which consists of a single isotope only. Five resonance levels

have been observed between 0 and 40 e.V., indicating a level spacing

of somewhat less than 10 e.V. for a heavy nucleus. A similar spacing

is indicated for iodine, which also consists of a single isotope, but there

is evidence from the table that the spacing becomes wider for lighter

nuclei. Both cobalt and manganese exhibit no resonance level below

100 e.V. and earlier experiments have revealed similar behaviour for

copper and arsenic. This would be expected because of the fewer degrees

of freedom in the lighter nuclei (see § 2.1).

t Retinwater and Havens, ibid. 70 (1946), 136 ; Rainwater, Havens, Wu, and Dunning,
ibid. 71 (1947), 65; Zinn, ibid. p. 762.

} Ibid. 69 (1946), 666. § Ibid. 48 (1936), 265. |j Ibid. 72 (1947), 986.

tt For further results see Rainwater, Havens, Dunning, and Wu, ibid. 73 (1948), 733
and 963.
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The radiation width remains close to 0*1 e.V. for most nuclei. Accord-

ing to the theory, the true neutron width should be roughly proportional

to for neighbouring nuclei. Using the cadmium result to fix the

constants, we have

l*4i7txlO'^e.V., (24)

with measured in e.V. The experimental values for the neighbouring

elements are hardly accurate enough, and the analysis not sufficiently

unambiguous, to check the general validity of this expression, but it is

certainly not in definite disagreement with observation. This may be

seen from the fifth column of Table II in which the values given from

(24) (enclosed in round brackets) are compared with those derived from

experiment. There seems also to be evidence from iridium that the

constant in (24) decreases for the heavier nuclei, as would be expected

(see Chap. VIII (8.31)).

On the other hand, the neutron level width should be much greater

for the lighter elements, partly because of the higher energy of the

resonance levels and partly because of the fewer degrees of freedom

among which the excitation energy is shared. This increases the chance

of sufficient energy concentrating on a single particle to enable it to

escape from the complex. Confirmation is provided by the experimental

proof that for cobaltf and manganese^ the resonance is associated

mainly with elastic scattering and not radiative capture.

According to the one-level formula the cross-section for capture in

the limit of low velocities, would be given by

-
I

^

^25+1

This interpretation is not necessarily justified, for there may be signifi-

cant contributions from more distant levels. However, one would expect

to vary irregularly from element to element, as it does. On the other

hand, q^ includes a substantial contribution from the potential scatter-

ing. This will be proportional to the effective geometrical cross-section

of the nucleus and should vary as where A is the mass number.

q^ should therefore vary much more smoothly than q^ from element to

element and tend to increase with mass number. This is in agreement

with the observed results.

Summarizing the conclusions derived from the experiments we may

t Barker and Goldhaber, Phya. Rev, 72 (1947), 866; Seidl, Harris, and Langsdorf,

ibid. p. 168.

X Harris, Langsdorf, and Seidl, ibid. p. 866.
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take the following average values for the various constants associated

with slow neutrons, i.e. with compound nuclei possessing 7-9 M.e.V.

excitation energy:

Level spacing for medium to heavy nuclei . . 6-10 e.V.

Radiation width 0-12 e.V.

Neutron escape width (for nuclei with massnumber
~ 100) l-4JS;jiXlO-»

e.V.

2.3. Resonance phenomena involving light nuclei

2.31. Resonant collisions with medium energy neutrons. As remarked

earlier, the study of resonance phenomena in collisions of neutrons with

light nuclei is as yet hardly begun. The spacing between levels is of the

order of tens of kilovolts and sources of neutrons with controllable

energy covering this range are only just becoming available. At the

time of writing the most complete study reported is that of Seagondollar

and Barschall,! who measured the total cross-section of aluminium for

neutrons with energies ranging from 10 to 1,000 k.e.V. Ten resonance

levels were found in this range, giving an average level spacing of

100 k.e.V. at an excitation energy of 9 M.e.V. The width of the level

for 155 k.e.V. neutrons is between 16 and 35 k.e.V. This width must

be due almost entirely to elastic scattering, since the radiation width

is unhkely to exceed a few electron volts (see § 2.32). For comparison

with neutron widths for medium and heavy nuclei, we may make use

of the relation r(Ej)/r{E2 ) = (EJE^Y,

where r{Ei), T{E2 )
refer to the neutron widths at two neutron energies

^1 ,
E^. Reduced to a neutron energy of 1 e.V., the observed width for

aluminium comes out to be between 40 and 80 e.V. This is more than

1 0^ times greater than for cadmium, showing once more how rapidly the

width increases with decrease in the number of nuclear degrees of

freedom.

2.32. Radiative capture of protons. The one-level formula gives for

the radiative capture cross-section for this case

where is the partial width for re-emission of protons with their initial

energy. If it is assumed that there is no appreciable possibility of the

t Phys. Rev. 72 (1947), 439. See also Allen, Burcham, and Wilkinson, Proc. Roy. Soc.

A, 192 (1947), 114.



NUCLEAR COLLISIONS316 XIII, § 2

compound nucleus breaking up with emission of particles or of protons

with less than the incident energy, then F ~ ^.+ 1^.

The proton width will include a factor representing the chance

that the particle wiU penetrate the Coulomb potential barrier and may
be writtenf / jp\i

where F^ is the width, in the absence of barrier, at the resonance energy

The first factor gives the chance that protons of energy E will

penetrate the barrier. It is given by formula (36) of Chapter III.

We assume, as for slow neutrons, that only protons of zero angular

momentum are effective.

For light nuclei F^ is very much larger than F^. Radiative capture

is more important than elastic scattering only at energies so low that

e~^ is very small. Except under these conditions we may take F^, F.

There is much less experimental information available on proton

capture than on slow neutron absorption. Most experiments have been

designed to measure primarily the resonance energies, some also give

the total (effectively the proton) width and some the integrated yield

over a resonance level. The latter is given by

F F 28+1 )•
(28)

The case most thoroughly investigated is probably that of capture

by
Li7 4. HI Be®* -> Be® + y. (29)

A resonance level exists at a proton energy of 440 k.e.V. and is of width

11 k.e.V. From the integrated yield F,. comes out to be 4 e.V., when

in (28) the negative sign is taken with s = 3/2. For this case e~^ comes

out to be 1/3-5, so F^ is about 40 k.e.V. This may be reduced to the

width at 1 e.V. energy by multiplying by (4-4x 10®)~*. Tliis gives

60 e.V., to be compared with 10“^ e.V. for the neutron width in medium
and heavy nuclei, and 40-80 e.V. in aluminium.

The resonance level of the compound nucleus Be® has also been

studied by observing the elastic scattering of protons by lithium (see

§2.36). As Be® is known to be unstable against disintegration into two

a-particles,§ it would appear incorrect to ignore the level width due

to this possibility. Actually the expected width due to a-disintegration

t See Chap. Ill, § 6.1.

X Hafstad, Heydenburg, and Tuve, Phya. Rev. 49 ( 1936 ), 866 ; Bonner and Evans,
73 ( 1948 ), 666 .

§ Dee and Gilbert, Proc. Roy. Soc. A, 154 ( 1936 ), 291 ; Wheeler, Phya. Rev. 59 ( 1941 ), 27.
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is much higher than the observed total width, and it thus appears

probable that, because of a selection rule, the a>process is forbidden in

this case. This would occur if the compound level of Be® formed by
the proton capture is of odd parity or odd total angular momentum.
Further evidence in support of this viewpoint is given from the proton

scattering experiments (§ 2.35 below).

Resonance energies found for proton capture by other light nuclei

are given in Table III. The case of fluorinef has been investigated in

TABLE III

Resonance Levels in Nuclear Complexes formed by Proton Capture

Resonance lines
Line

Initial

nucleus

Compound
nucleus

Proton energy

{e.k.V.)

Excitation energy

{M.e.V.)

width

{e.k.V.) Reference

Li’ Be* 440 17-8 11 (a), (e)

Be» B^* 350, 670 6-8, 71 (h)

Bii C^^ 180, 650, 850, 950 16-3, 16-7, 16-9, 170 (b)

C12 N'* 480 2*5 (b)

(^’13 NH 570 8-2 (b)

F19 No2* 330, 470, 590

670, 860, 920

13*3, 13-5, 13-6

13-7, 13-9, 13-9

(b), (c). {d)

Na23 425, 525, 570

690, 755, 875

11*3, 11*4, 11-5

11*6, 11-7, 118
(e)

AF® 180, 410, 480,

575, 825

8*0, 8*2, 8-3

8*4, 8-6
j

(e)

Mg26 AF’ 580, 680, 1,000 7*7, 7-8, 8-1 (e)

psi g32 460, 580, 700, 960 9*9, 100, 101, 10-4 (e)

(a) Hafstad, Hoydenburg, and Tuve, Phys. Rev. 49 (1936), 866.

(b) Curran, Dee, and Petrzilka, Proc. Roy. Soc. A, 169 (1939), 269.

(c) Street, Fowler, and Lauritsen, Phys. Rev. 59 (1941), 253.

{d) Bennett, Bonner, Mandeville, and Watt, ibid. 70 (1946), 882.

(e) Curran and Strothers, Proc. Roy. Soc. A, 172 (1939), 72.

some detail, but the interpretation is more complicated. It has been

found that the gamma radiation arises from the sequence of processes

F19 + HI -> Ne2o -> + He^

016 + y.

The competing processes involved in the decay of the neon compound

nucleus are emission of short-range a-particles, emission of long-range

a-particles, and re-emission of protons. A theoretical discussion has

been given by SchifF.J

t Street, Fowler, and Lauritsen, ibid. p. 263 ; Bennett, Bonner, Mandeville, and Watt,

ibid. 70 (1946), 882; Bonner and Evans, ibid. 73 (1948), 666.

t Ibid. 70 (1946), 891.
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2.33. Resonance disintegration by oc-particles. Resonance effects in

nuclear collisions were first observed in disintegration of light nuclei by

o£-particles.t At that time they were interpreted in terms of the one-

body theory according to which resonance effects would only occur if

the energy of the incident a-particles was below the Coulomb barrier.

With the many-body picture, this is no longer strictly valid but remains

largely true in practice for the following reason. The barrier penetra-

bility falls off very rapidly for large angular momenta. Hence the only

levels of the compound nucleus which will be formed by a-particles,

with energies below the barrier, will be ones with low angular momenta.

These levels will be relatively widely spaced and resonance effects will

not be obscured by overlap. Once the a-particles are energetic enough

to pass over the barrier there is much less restriction on the angular

momentum of the compound nucleus. The effective resonance levels

are thus more closely spaced and tend to overlap sufficiently to obscure

resonance effects.

Table IV summarizes the observations for a number of cases. The

total level width is probably due largely to the emitted particle rather

than to re-emission of the a-particle. In most cases more than one

TABLE IV

Resonance Levels in Nuclear Complexes formed by oc-particle Capture

Initial

niicleus

Compound
nucleus

1

Resonance levels

Level

width

{M.e.V.) Reference

OL-particle

energy

{M.e.V.)

Excitation

energy

of compound
nucleus

{M.e.V.)

Be» C13 3*4; 4-8 12-8; 13-8 0-3; 0'3 {a)

BIO 4-2 14-8 0-5 (b)

B^i 3-2 13-4 0-4 (c)

N14 3-6 8-2 0 (d)

pio Na*® 3*7; 41 14-5, 14-8 010; 013 (e)

Mg*^ Si®« 5*7; 6-3 13-7; 14-2 0-12; 013 (e)

Al*’ p81 4 0; 4-5 120; 12-4 010 (/)
4-9; 6-3 12-8; 131 0 07; 013 (?)

5-8; 6-6 13-6; 14-3 0d2 (?)

(o) Bemadini, Zeits.f. Physik, 85 (1933), 655.

(b) Miller, Duncanson, and May, Proc. Camb. Phil. Soc. 30 {1934), 649.

(c) Chadwick, Proc. Roy. Soc. A, 142 (1933), 1.

(d) Baton, Zeits.f. Physik, 90 (1934), 586.

(e) Chadwick, Constable, and Pollard, Proc. Roy. Soc. A, 130 (1931), 463.

(/) Chadwick and Feather, Int. Conf. Phys., London (1934).

{g) Duncanson and Miller, Proc. Roy. Soc. A, 146 (1934), 396.

t Chadwick, Constable, and Pollard, loc. oit.
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group of emitted particles is observed, corresponding to different states

of the final nucleus, as will be seen from the table. The mean width
for a single group is obtained by dividing the total width by the number
of groups. It thus appears that, for the compound nuclei and

the proton (or neutron) width for a given final state, is about 0*1,

0*06, and 0*02 M.e.V. The average energy of the emitted particles is

roughly 5 M.e.V. so the partial level widths, reduced to 1 e.V. energy,

are from 25 to 50 e.V. for and and about 10 e.V. for These

values are compatible with those derived from neutron collisions and
from radiative capture of protons (§§ 2.31 and 2.32).

The cx-particle width may be deduced also, from the integrated

disintegration yield, using the formula (28) with for P^, provided the

angular momentum of the resonance level is known. Thus it is found

from the measurements for aluminium that {1+ 1 /(2^+1 )}rc^ = GOk.e.V.,

which is to be compared with the total width of 90 k.e.V.

2.34. Summary ofdaai on level spacings and level widthsfor light nuclei.

Combining the data available from the two kinds of experiment dis-

cussed above we have, for light nuclei:

Level spacing—at about 14 M.e.V. excitation energy, ~ 1 M.e.V. for

C, 0*1 M.e.V. for Ne.

Particle level width (reduced to 1 e.V. energy and without barrier)

~ 60 e.V. for Be®, ~ 10 e.V. for P®^.

Radiation level width ~ 1-5 e.V.

2.35. Elastic scattering of charged particles by light nuclei. We consider

first the case in which the incident and struck particles have zero spin.

The formula (132) of Chapter VIII may then be applied, giving for the

differential cross-section

(31)

where S, = e-% 1 (32)

In this expression r]i is the phase shift due to the potential scattering

which is approximately that due to an infinite potential barrier, of

radius R, plus a Coulomb field. The sum is taken over the resonance

levels of the compound nucleus which possess I units of angular momen-

tum, r is the total width of the level and P^^ the partial width for

re-emission of the incident particle, usually an a-particle, with its

initial energy.

In most instances we can ignore the effect of all but the closest
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resonance level. We shall, at first, also make the further assumption

that the only processes which can contribute to the total level width

are elastic scattering and radiation. For light nuclei the radiation

width is negligible compared with the particle width, except for very

low particle energies, so we may write

^^07 ^ _ 1 g2iSi

E-Eji+\ir - E-Ej,+\ir (33)

where S, = arctan(^i_^). (34)

This gives Si = (36)

with
<f>i
= (36)

The expression for the differential cross-section thus takes the standard

form (cf. (17) of Chap. II) with the phase shift given by the sum of a

contribution from the potential scattermg and from the neighbouring

resonance level.

For scattering of charged particles the quantity of most interest is

the ratio R of the differential cross-section to that which would be given

by the Coulomb field only. Following a similar procedure to that used

in discussing proton-proton collisions, we find

R 1 -^--sin2^0exp(^alogsin2^0) ^ 1)-F5(cos0)

(37)

where a ~ ZZ'c^Jfiv, Z, Z' being the nuclear charges and v the relative

velocity, is the phase shift due to the pure Coulomb field, given by

(see Chap. Ill, § 4*1)

Cl = arg r(i-f- 1-f-ia). (38)

Thus (39)
(l+icY)2(2-f-ia)2...(Z+ia)2

( 1+ a2)( 22+ (
/2 _|_ ^2)

*

Kj is the additional phase shift due to the resonance scattering and the

remainder of the potential scattering so that

Xi = (40)

In general rji—h will vary smoothly and gradually with energy. It

follows from the form (34) of 8^ that, in passing through a resonance

level, Ki will change by If it is possible to carry out measurements

of the ratio R over such an energy and angular range that the phases

Ki may be deduced, the energy and width of resonance levels may be

obtained from this result.



XIII, § 2 MANY-BODY RESONANCE PHENOMENA 321

The only collisions for which a sufficiently complete series of observa-

tions have been carried out for an analysis of this kind are those of

a-particles with helium nuclei.f Allowance must be made in this case

for the symmetry of the system which requires that the contribution

from odd angular momenta should vanish (see Chap. V, §4:.!). The
theoretical analysis due to Wheeler{ leads to the phase shifts illustrated

in Pig. 62. The behaviour of Kq strongly indicates the existence of a

Fio. 62. Phase angles derived from analysis of anomalous scattering of ot-particles by
helium. components of kq arising respectively from a resonance

level of Be® and from jiotontial scattering.

resonance level. Evidence from the a-disintegration of Be® already

indicated the existence of a level at 2*8 M.e.V. with width 0-8 M.e.V.

Wheeler showed that the derived Kq could be well represented by taking

Sq as given by (34) with jEj^ = 3*1 M.e.V. and F = 0*8 M.e.V., leaving

a contribution from which varied hnearly with energy over the

resonance region. This is roughly what would be expected on the basis

of the rigid sphere representation of the anomalous potential scattering.

The decomposition of kq into these two contributions is illustrated in

Fig. 62.

The collisions of a-particles with and nuclei also satisfy the

conditions for applicability of the formula (31). Up to the present the

t Rutherford and Chadwick, Phil. Mag. 4 (1927), 605; Chadwick, Proc. Roy. Soc. A,

128 (1930), 120; Blackett and Champion, ibid. A, 130 (1931), 380; Wright, ibid. A, 137

(1932), 677; Mohr and Pringle, ibid. 160 (1937), 193; Devons, ibid. A, 172 (1939), 564.

t Phya. Rev. 59 (1940), 16.

3595.67 Y
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study of these collisions has been confined to observation! of the energy

variation of the scattering ratio at a limited number of fixed angles.

Resonance effects appear in such observations as maxima in the scatter-

ing as the energy varies. In the neighbourhood of a resonance level

with I units of angular momentum the scattering ratio R may be written

12

R

where

ae'^^ - (41)
x+i|

p
~ 2(2i-|-l)a“^sin2^0jFJ(cos0),

a = c.log2sinH0+^^-^o, ^ == 2(iJ-J5^)/r. (42)

represents the contribution from the background scattering. If we
ignore the relatively slow variation of this background scattering with

energy, we find that the maximum and minimum valfees of R in the

neighbourhood of the resonance level are given by

KLn = {a2—apsin(or—D+ ipSp \p,

so that p = -BUx±i?jnin- (43)

The variation ofR in passing through the level is as shown in Fig. 63. If

the observations are made at large angles, so tiiat p is large, the maximum
occurs very nearly at the resonance energy, the minimum at an energy

less than the resonance value by ^rpsec(a--^)a. From observations of

this kind it is possible to observe resonance energies, but it is more

difficult to decide the angular momentum of the level concerned—it is

usually difficult to determine p from (43) as the cross-section minimum
is often obscured by insufficient resolution. Fig. 64 illustrates results

obtained by Ferguson and WalkerJ for scattering at 157° by oxygen.

Two distinct resonances at 6*5 and 5-5 M.e.V. are clearly seen. These

levels arise from excited states cf at 10*1 and 9-0 M.e.V. above

the ground state and have also been observed by Bonner§ in the reaction

H2 + Fi» + ni. (44)

Similar measurements for carbon reveal levels which correspond to

excited states of at 11-4, 11-1, and 10-6 M.e.V. above the ground

state. Much still remains to be done in studying these scattering pheno-

mena over a wide range both of energy and of angle.

For collisions in which the nuclei do not possess zero spin the general

t See, for example, Devons, Proc. Roy, Soc, A, 172 (1939), 127, and Ferguson and
Walker, Phys. Rev. 58 (1940), 666.

t Ibid.

§ Proc. Roy. Soc. A, 174 (1940), 339.
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formula is more complicated, but much may still be done in analysing

the resonance effects by ignoring the potential scattering, provided the

ratio R at resonance maximum is considerably greater than unity.

The most interesting experiments of this kind involve the scattering

of neutrons or of protons. Staub and Stephensf observed a resonance
maximum in the scattering of 1 M.e.V. neutrons by helium nuclei. It

was later found by Staub and Tatel| that the resonance level was a

Kinebi’c energy of rclabive mobion

Fig. 63. Fig. 64. Anomalous scattering? of ot-par-

ticles by oxygen at 157°, exhibiting two
resonance levels of No^®.

doublet of width 0*4 M.e.V. The magnitude of the cross-section indi-

cates that neutrons with one unit of angular momentum are involved.

This being so, the resonance levels are those of the P^ doublet of He^.

Further evidence for this result has been deduced by Wheeler and

Barschall§ from the experimental results of Barschall and Kanner.j]

The corresponding resonance has been observed in proton scattering

by helium,tt although too broad to resolve into doublets, can be

identified as a P level of Li®.

So far it has been assumed that the partial width for elastic scatter-

ing is practically equal to the total width F of the resonance level. If

this is not so, a factor F^/F must be included in the expression (43) for p,

thereby reducing the importance of the resonance effect. This will be so

in scattering by heavy nuclei where inelastic collisions are important. It

t Phya. Rev. 55 (1939), 131. J Ibid. 58 (1940), 820. § Ibid. p. 682.

{)
Ibid. p. 590. See, however. Hall and Koontz, ibid. 72 (1947), 196.

it Heydenburg €ind Ramsey, ibid. 60 (1941), 42.
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also means that in the elastic scattering of deuterons, which, owing to

their high internal energy, usually produce disintegration on collision,

resonance effects will be very weak.

An appUcation of these considerations has been made by Creutz,*[*

who investigated the scattering of protons by lithium. He observed the

resonance level which is effective in the radiative capture process (see

(29) above). The magnitude of the

effect indicated that I^/F is of order

unity. This makes it unlikely that

the state ofthe compoundBe®nucleus

which is formed can break up by a-

particle emission, in agreement with

the conclusions of § 2.32.

2.36. Particle emission from light

nuclei after capture of slow neutrons.

There are two reactions in which slow

neutron capture leads to a-particle

emission:

Li« + Til -> H® + He^

BIO + Til -> Li7 + Hel (45)

The boron reaction is of special im-

pbrtance in practice. This is because

the cross-section is large and follows

the inverse velocity law up to quite

high neutron energies. It therefore

provides a convenient method for

measuring neutron flux over a wide

range ofconditions. Fig. 65 illustrates the observed variation of the boron

cross-section over a neutron energy range from 0-01 to 100 e.V. obtained

by Rainwater and HavensJ using the modulated beam method.

The a-particles emitted in the two reactions are quite energetic and

are able to pass over the Coulomb potential barrier. It is reasonable

to suppose therefore that the appropriate partial width is of the

same order as it would be for neutrons of the same energy. In applying

the one-level formula

2?+t)(^-^^)*+|(f,+r„+r,)2
’

t Phya. Rev. 55 (1939), 819.

X Ibid. 70 (1946), 136; see also Zinn, ibid. 71 (1947), 762.

K
/

/
>
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Neutron energy (ev)

Fig. 65. Observed total cross-section

for absorption of slow neutrons in boron

showing that it is inversely propor-

tional to the neutron velocity.
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we may write r„ = aTj^EjE^Y,

where a is of order unity. The radiation width may be ignored as it

is very small compared with This gives

2s+l

where 31 is the neutron mass. The observed value for boron isf

6*41 X cm. where E is measured in e.V., so that

comes out to be 8*5. This shows that is probably of the same order

as Ejf, It is known that r^, is of the order 100,000 e.V. (see § 2.33), so

that Eji is probably of this order also. The smaller cross-section observed

for the lithium reaction J is probably due to the effective resonance

energy being larger.

3. Effect of molecular binding on the scattering of slow neutrons

3. 1 . The psendo-potential

So far we have considered the collisions of neutrons with free nuclei.

The conclusions will remain valid if the nuclei are bound in chemical

compounds, provided the binding energy is small compared with the

kinetic energy of the neutrons. If this condition is not satisfied modifica-

tions due to the binding become important. In this section we discuss

the way in which these effects may be taken into account.

The problem of the exchange of energy between translational motion

of an atom and molecular vibration was discussed in Chap. XII, § 3.5.

It was stated there that, provided the range of the interaction between

the impinging atom and the particular atom in the molecule with which

the impact occurs is great compared with the amplitude of the vibration,

Born’s first approximation may be used. For the neutron problem,

however, the state of affairs is the very opposite to this—the range of

interaction is very small compared to the amplitude of vibration.

Nevertheless, Fermi§ showed that Born’s approximation may still be

used if the actual interaction between a neutron of mass m and nucleus

of mass 31 is replaced by a pseudo-potential

where r is the relative position vector of the neutron and nucleus, 47Ta2

t Ibid.

j Havens and Rainwater, Phys. Pev. 70 (1946), 154.

§ Ric. Sci, 7 (1936), 13.

a /
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is the low velocity limit of the scattering cross-section when the nucleus

is free, and S is the usual S-function.

Before showing how this may be justified it is of interest to state

cert^ain general consequences. If Qq is the neutron scattering cross-

section for the free nucleus at rest, or for the bound nucleus when the

neutron energy is great compared with that of the molecular vibration

and rotation, the cross-section for scattering of neutrons with energy

insufficient to excite even molecular rotation is greater than Qq by a

factor (l-fm/Jkf) 2
/( 14-W^i)^> where is the mass of the molecule as

a whole. Thus the cross-section for scattering of a very slow neutron

by a proton bound to an infinite mass is four times greater than that

for a free proton at rest.

For intermediate conditions the effect is more complicated. When
the neutron energy is sufficient to excite vibration, a quantum treatment

using Born’s approximation is necessary. In most jjractical cases the

neutron energy is great compared with that of the rotation and, if no

vibrational excitation can occur, it is possible to deal with the problem

classically. The reduced mass which occurs in the factor

above is then replaced by a mass tensor so that the effect depends on

the direction of incidence of the neutron relative to the molecules.

Special interest attaches to collisions with molecular hydrogen and, to

a lesser extent, with deuterium, as the rotational energy is then com-

parable with the kinetic energy of neutrons at liquid air temperature.

In a complete treatment of the scattering of neutrons by molecules

and by crystals it is necessary to allow also for interference effects, for

the dependence of the cross-section on nuclear spin, and, in certain cases,

for capture. The first two of these are of particular importance for

molecular hydrogen and deuterium.

We shall first show how the use of Fermi’s pseudo-potential may be

justified and then describe briefly some appUcations.

3.11. Derivation of the pseudo -potential,^ For the sake of definiteness we take

the case of a neutron colliding with a proton which is under the influence of a

molecular binding potential. The wave equation for the system may be written

where M is the mass of either nucleon, r,,, r„ are the respective coordinates of

neutron and proton, TJ is the nuclear interaction between them, and Vix^) is the

potential energy of the proton due to the molecular binding. The range of U is

t The method of this section follows closely that given in greater detail by Breit,

Phys, Rev. 71 (1947), 215.
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not only much smaller than the wave-length of the incident neutron but is also

much smaller than the amplitude of the proton oscillations.

We require solutions of the equation (49) of the usual form

= (50)

where F, r“ (51)

ipgirj,) is the vibrational wave function of the proton in the field V, associated

with energy Eg, so that
kl == 2M(E---Eg)lh^

It follows from equation (16) of Chapter VIII and (30) of Chapter VI that

_/^exp{tfc,|r„-r;|}
F. = 2TrM

'A’ //
U{rr-

r„-r„
^T(r;,r;)0?(r;)dT;dT;, (52)

where we denote r^— r^ by r. Substituting back in (50) gives, without approxi-

mation
27tM

liT 2
exp{ifc,|rn-r;|

W(T'j„T'„)4,t(rp)dT'j,dTn. (53)

We now take advantage of the possibility of choosing a range R such that, while

U(r*) is r('lativ('ly very small for r' ^ R it is large compared with the energy of

molecular vil>ration for r' < R.

By changing the variables from r^, r„ to r^, r we may expand T* in the

alternative form

where

with

T--— 0+E-E.]x. » -5^2 ’•‘’'X"L47tW

(54)^8t — J

Within the range R of U, E— Eg is negligible. So also is the sum on the right-

hand side, for the change of the proton functions ijjg, is negligible between 0

and R. We may therefore take as a proper solution ^ of

[i
,V2-C7]x = 0 .L47rW

for all 5, so that, within the range i? of U, T may be written

=nrM^).
Substitution in (53) gives now

T = 2 i>s j M)G(r,r;,r^),l,:(r;)dT;.

with 0{r,r;.T,) = r
J l^n

Within the range E of U, |r^— r^l < i?, so that

where 7 = 1
U(r')x(r')dr'.

(56)

(66)

(57)

(68 )

(69)

(60)
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This integral may be evaluated using the equation (66) for to give

T — (61)

where a is the value of '—T^d)(jdr at r = J?, beyond which TJ vanishes.

We now have

r = e«*.^„+2a2^.(r„) f ^?(r;)/(r;)
J IFj,— r„|

so that, to this approximation,

^ f(Vj+V’)+if-F(r^)]T= _^/(r^)S(r,-r„).
li

(62)

(63)

It is now only necessary to obtain a suitable approximation for /(r^,). To do

this we note that, ignoring a*, and except for very small r,

X^(l+ “) (r<iJ). (64)

Substituting '¥ = x(»')/(*‘i>) = +

on the left-hand side of (62) and writing

gives

f(r^) f{^p)^S (**p)

1
r©

/(r,) = e»**«^o(»'p)+ 0(a).

(66 )

(67)

The equation (63) with the form (67) for/(r^) is of exactly the same form as that

which would have been obtained if the neutron-proton interaction were repre-

sented by the potential

^P$ (68 )

and Bom’s approximation applied, so that VpgW is replaced by Vpgi/jQ{rp)e^^^n,

In this way a solution is obtained which is essentially the first term of an
expansion in powers of ajd, where d is the amplitude of molecular vibrations.

3.12. Inclusion of spin coupling in the pseudo-potential. In many
cases the amplitude a which appears in the pseudo-potential depends

on the total spin of the neutron and scattering nucleus. It is then

necessary to allow for two amplitudes according as the total

spin is s being the nuclear spin quantum number. The pseudo-

potential may then be written

^ ^ ““ p)] 8(rp—r^), (69)

where p is an operator possessing the respective eigenvalues i 1 when
the system has spin If® is the spin operator for the neutron and s

for the nucleus, then

P =
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3.2. Applications of the pseudo-potential

3.21. Collisions with an isotropic vibrator. To obtain a general idea

of the way in which the total collision cross-section and rate of energy

loss varies with neutron energy in passing from the limit for very slow

neutrons to that in which the proton may be regarded as free, it is

convenient to take the simplest case of a proton, bound isotropically

to an infinitely massive atom.

The differential cross-section Iqs{^) for a collision in which the proton

is excited from the ground to the 5th vibrational state, is given by the

formula (31) of Chapter VITI, with the pseudo-potential (48) in place

of F(r, Tfj), Hence

US)

(71)

where Jc, k,, are the initial and final wave numbers of the neutron, if/Qy tfj^

the initial and final vibrational wave functions of the proton,

= Kn,

and — 2JckgCOS0, (72)

In the limit of very low neutron energies, only clastic collisions are

possible and K 0, giving for the cross-section

J Iqo{ 0) dco — IfiTra^ — 4^0, (73)

where Qq is the cross-section for collision with a free proton at rest.

For an isotropic oscillator of mass m with fundamental frequency r,

we have
(74)

where and the ^’s are the usual harmonic oscillator wave

functions
. _ . ..... . .^d^

(75)

with I = (
27Tvmlh)^x = ax.

Substitution in (71) gives

where q = K\1ij[^7Tmv)]^ and the summation extends over all positive

integral values of 5^, 5^, for which ~ The sum may be

easily carried out to give

4(0) dw = 4a2J
iC 5

!

(
77

)
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where /(a:) = g-x l + +^ , (79)

and € = Ejhv, E being the energy of the incident neutron,

^max be conveniently expressed in the form

Qmin = €i-(€-s)4, = ei+ {e-s)i. (80)

For large E, is 0{ 1/E) and q^^^ is 0{Ei), so that/(?„ax) is negligible

and /(?min) 1 for all values of s such that shv < E. The cross-section

is thus independent of s and approximately given by QJsq, where

Sq hv c:=L E. Since there are approximately levels which can be excited,

the total cross-section becomes Qq, This is just what would be expected

for collisions with a free proton—all energy losses up to the total energy

are equally probable and the total cross-section is Q^,

Fig. 66 illustrates the variation with energy of the cross-sections for

intermediate values of e ranging from 0 to 3. In this figure the effect

of the binding on the energy loss is illustrated by a curve giving the

ratio of the energy loss to that which would have occurred, on the

average, in collision with a free proton.

More detailed calculations allowing for lack of symmetry in the

binding, etc., have been carried out b}^ Arley,t Bethe,J and Sachs and

Teller.§ The latter authors considered the important practical case,

mentioned earlier, in which the neutron energy, while insufficient to

excite vibration, is nevertheless great compared with that of the rota-

tional quanta.

Detailed comparison of theoretical predictions with experiment can-

not yet be made except for collisions with molecular hydrogen (see

§3.22). Qualitative evidence in favour of the general conclusions is

available, however, from experiments such as those of Carroll.
|1
He

measured the cross-section per proton for neutrons of approximately

t Kgl. Dansk. Vid, Selsk. 16 (1938), 1. + Eev. Mod. Phxjs. 9 (1937), 126.

§ Phys. Rev. 60 (1941), 18. H Ibid. p. 702.
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thermal velocities, scattered by a series of gaseous paraffins at room
temperature, and found a slow but steady increase in going from

methane (CH4) to butane C4H10. If only elastic collisions were possible,

the cross-section should increase as the square of the reduced mass.

It actually increases rather more slowly, but it must be remembered

that excitation of rotation may still occur and the effective reduced

mass must include a contribution from rotational inertia.

Fio. GO. Effect of ohoinical binding on scattering and energy loss of neutrons in collisions

with protons.

() Cross-sections croUisions in which s vibrational quanta fiv are excited, as

functions of the ratio e of neutron energy to hp. Q^g is given as a multiple of the

cross-section for scattering by free protons.

() Effective cross-sections ^ ^^^^rgy loss in terms of that ichpQfy for scattering
t

by free protons at rest.

3.22. Collisions ofslow neutrons with molecular hydrogen arid deuterium.

Particular interest attaches to the study of these colhsions. The simpli-

city of the molecules makes possible a detailed treatment of the effect

of interference, as well as of the molecular binding, on the scattering.

Furthermore, the rotational quanta are comparable with the energy of

neutrons at room temperature, the neutron-proton interaction is spin

dependent, and it is possible to study separately the scattering by
molecules in which the nuclear spins are parallel or antiparallel respec-

tively.

From a comparison of theoretical and observed cross-sections it has
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proved possible to determine whether the state of the deuteron (§1.1)

is real or virtual, and it seems likely that a sensitive method of deter-

mining the range of nuclear forces may also be provided.

The rotational energy states (quantum number J) of the ground

vibrational level of Hg are divided into two non-combining sets of

opposite symmetry. In para-hydrogen the nuclear spins are opposite

and the rotational states symmetrical (J = 0,2,...), whereas in ortho-

hydrogen the spins are parallel and the rotational states antisymmetrical

(J = 1,3,...). The energy separation of the lowest states of the two

systems is 0-0147 e.V. The rate at which ortho-hydrogen molecules can

make transitions to form para molecules is so slow that it is possible,

with suitable experimental technique, to carry out experiments at low

temperatures in a quasi-equilibrium in which both sets are in their

lowest states. It is also possible to vary the relative concentration of

the two and thus to determine the separate contributions from each.

Because of the spin dependence of the interaction between a neutron

and proton, a neutron impact can produce a transition between oi^tho

and para states. If the molecules are in their lowest states and the

neutron energy is < 0-0220 e.V., it is insufficient to excite a para

molecule to the lowest ortho state. The only possible collisions which

can then occur are either elastic, or superelastic in which an o]*tho

molecule undergoes a transition to the para state, giving the excess

energy to the neutron.

To evaluate these cross-sections the interaction between a neutron

and proton may be represented by the appropriate pseudo-potential

and Born’s approximation used. For this case, in which <5 ~ J, the

interaction between a neutron and a molecular proton, each of mass m,

can be written

V = 4^{«i(3+o„.Op)+ao(l-o„.Op)}S(r„-rj,), (81)

a^, Qp being the respective spin operators of proton and neutron. The

interaction with the molecule will then be given by the sum of two such

terms for the two protons. It can be broken up into two parts, respec-

tively symmetric and antisymmetric in the proton spins. The former

gives rise to collisions in which the rotational symmetry is unchanged,

whereas the latter leads to transitions from one system to the other.

The detailed calculation then follows along standard lines usingBom’s
approximation with the appropriate rotational wave functions. It was

first carried out in detail by Schwinger and Tellerf and later carried out

t 52 (1937), 286.



XIII, § 3 SCATTERING OF SLOW NEUTRONS 333

to greater accuracy by Hamermesh and Schwinger.f It is easily seen

that the three cross-sections Q(0-->0), $(1 1), and Q(1 ->0) corre-

sponding, respectively, to elastic collisions with para and ortho mole-

cules in their lowest states and to superelastic collisions with an ortho

molecule, depend in quite different ways on the amplitudes and

They contain the factors (3ai+«o)^»

respectively. It has been pointed out in § 1.1 that is considerably

10
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Fia. G7. Depondonce of cross-section for scattering of neutrons by para- and ortho-

hydrogen on tho range of tiie neutron-proton interaction, assumed to bo of spherical well

form. Tho gas is taken to be at a temperature T = 20® and the neutron energy ~ kT,

greater than so that Saj and are comparable. The para-hydrogen

cross-section should thus depend very strongly on the relative sign of

and being small if the signs are opposite, i.e. if the state of the

deuteron is virtual. Furthermore, if the signs are opposite, as in fact

they are, the size of the factor will depend quite sensitively on

the magnitude of i.e. on the range of the nuclear forces. On the other

hand, the ortho-hydrogen cross-section should not depend very sensi-

tively on the range and be relatively unaffected by cancellation. Fig. 67

illustrates these results.

The first measurements of the relative cross-sections of para-

and ortho-hydrogen were carried out using liquid hydrogen, and

showed clearly that the para cross-section is much smaller than the

t Ibid. 71 (1947), 679.
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ortho,t This confirmed the virtual character of the ^8 level of the

deuteron. At the time of writing, experiments of sufficient accuracy

to provide information on the range of the interaction in the ^8 state

are still awaited. J

Similar calculations may be carried out for D2 »§ interesting

information is likely to be derived from them. Fig. 68 illustrates the

ratio of the ortho to the para cross-sections in this case, for neutrons

iL 2.

Fig. 68. Ratio Q (ortho )/Q(para) of cross-sections for scattering of neutrons by ortho-

and para-deuterium as a function of the ratio 0|/oj of the amplitudes of the quartet and
doublet scattering of a neutron by a deuteron. The gas temperature and neutron energy

is as in Fig. 67.

at a temperature of 20° K, as a function of the ratio a^/a^ of the ampli-

tudes for the quartet and doublet scattering of a neutron by a deuteron.

Even with experiments of the necessary accuracy the amplitude ratio

cannot be determined unambiguously in this way, though the relative

sign can be.

3.23. Interference effects—the sign of the scattered amplitude. It has

been clear from the case of molecular hydrogen that interference effects

arising from the coherent scattering of neutrons by nuclei are affected

strongly by spin dependence of the forces and by the sign of the scat-

tered amplitudes a.

Referring to the pseudo-potential (69) it may easily be seen that,

whereas the total scattering depends on

{(a+l)a.|+j+8a|_j}(2s+l)-i, (82)

t Halpem, Estermann, Simpson, and Stem, Phys. Rev. 52 (1937), 142; Brickwedde,
Dunning, Hoge, and Manley, ibid. 54 (1938), 266; Libby and Long, ibid. 55 (1938), 339.

i See, however, Sutton, Hall, Anderson, Bridge, de Wire, Lavatelli, Long, Snyder, and
WilUams, ibid. 72 (1947), 1147.

§ Hamermesh and Schwinger, ibid. 69 (1946), 145.
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the interference effects are determined by

{(s+l)a,^^+sa,_^Y(2s+l)-\ (83)

and may well be reduced to a negligible value by cancellation.

Fermi and Marshalll have carried out experiments to determine the

relative signs of the scattered amplitudes or 'scattering lengths’ for

different nuclei by making use of certain interference phenomena. In

the Bragg scattering of slow neutrons by crystals containing at least two

kinds of atoms, the relative intensity of the scattering in different orders

and crystalline planes depends on the phase relations between the waves

scattered by the different atoms and hence on the relative signs of the

scattering lengths. From such effects with hydrides the range of the

neutron-proton interaction in the state may be determined.

{

Similarly, the cross-section for scattering by a molecule, of neutrons

with wave-length comparable with or greater than the atomic distances,

depends on the relative sign of the scattering lengths due to each con-

stituent nucleus. If the neutron mass is assumed to be negligible

compared with that of the atoms concerned, the effects may be treated

in the same way as the diffraction of X-rays by molecules.

A third method depends on observing the limiting angle for total

reflection of neutrons from substances with positive scattering length

(the same sign as for the scattering of neutrons by protons, in which

there is a phase change of 77 on scattering). For such substances the

refractive index is less than unity, being given by

n = I —X^Nal27T,

where A is the wave-length and N the number of atoms/c.c.

It is found that most nuclei have positive scattering lengths, excep-

tions being hydrogen (for the scattering) and one or more isotopes

of lithium and manganese.

The scattering of slow neutrons by crystals has been discussed in

considerable detail by several authors.§ The technique involved is

similar to that used for the corresponding problem for X-rays. We shall

therefore not give any detailed discussion here. It is of interest to

mention, however, that the use of the pseudo-potential for these pro-

blems may be extended to include absorption. This may be done by

treating the scattering length a as complex. If are the scattering

t Phys. Rev. 71 (1947), 666.

J Shull, etc., ibid. 73 (1948), 262 and 842.

§ Rasetti, ibid. 58 (1940), 321 ; Halpem, Hamermesh, and Johnson, ibid. 59 (1941),

981 ; Seiger and Teller, ibid. 62 (1942), 37; Weinstock, ibid. 65 (1944), 1; Goldberger
and Seitz, ibid. 71 (1947), 294.
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and absorption cross-sections respectively, then

477 /

"*
477

*

where h is the neutron wave number,f

4. Magnetic scattering of slow neutronsj

We now consider scattering effects due to interaction between the

magnetic moment of the neutron and the spins of atomic electrons.

These effects are specially important as they make possible the produc-

tion of partially polarized neutron beams. By use of these beams and

radio-frequency technique it has been possible to determine the magnetic

moment of the neutron with great accuracy.§ It is possible also that

the study of the scattering of neutrons by ferromagnetic materials may
3deld useful information about the internal structure of such bodies.

The scattering of a neutron by an atom, including magnetic effects,

may be calculated by Born’s approximation if a further term is added

to the appropriate pseudo-potential to represent the magnetic inter-

action.

The energy of interaction of an electron of coordinate r with a

magnetic field of vector potential A is given by — ea. A(r), where a is

the vector matrix which occurs in Dirac’s equations, ca being the

operator representing the electron velocity. If the vector potential

arises from the magnetic field of a neutron of coordinate we have

where is the neutron magnetic moment. The magnetic interaction

with the atomic electrons can therefore be written

= (
88

)

t This result follows from the relation a == limj— 1 )} with the phase 77 taken

as complex and related to and <2^ as in the formulae (6 ) and (7) of Chapter VIII.

X Bloch, Phya. Bev. 50 (1936), 259; Halpem and Johnson, ibid. 51 (1937), 992; 52
(1937), 62; 55 (1939), 89; Schwinger, ibid. 51 (1937), 544.

§ Arnold and Roberts, ibid. 71 (1947), 878.
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the sufl&x I distinguishing the various electrons. The neutron moment
has been written in the form where is the spin operator and
/x^ the magnitude of the moment.

In a ferromagnetic substance, magnetized to saturation, the spins of

the electrons responsible for the ferromagnetic properties are strongly

coupled and aligned parallel to the direction of magnetization. Slow

neutrons are insufficiently energetic to reverse the spins of any of these

electrons, so the scattering is entirely elastic. The contribution to the

scattered amplitude due to is therefore given, by Born’s approxima-

tion, as

2 2 f
®^PW“o-ni)-r„}P,dT„dT,,

where P, = A a,'F:5(r,). (87)

In this expression Xn represents the neutron spin function. is

the wave function of the atomic electrons including their spin, and

the integration over drj is also supposed to include summation over the

spin coordinates, and are unit vectors in the direction of incidence

and of scattering respectively, k is the neutron wave number, and M
its mass.

Since the neutron spin is unchanged, 2 Xn Xn t)e replaced by
8pln

the unit vector in the direction of the neutron spin. Furthermore,

in non-relativistic approximation, the contribution to from electron

spin is such thatf

%.(r,)a,n(r,) - Acurl,('^o,n). (88)
TrhG

where O; is the Pauli spin operator for the Zth electron and m is the

electron mass.

The electrons which contribute to the ferromagnetism will have their

spins aligned in the direction of magnetization. Since there is no reversal

of electron spin during the collision, the summation over the spin

coordinates of each of these electrons gives

=
(
89

)
spin

where s is a unit vector in the direction of magnetization and the

functions involve only the space coordinates of the electrons. The

remaining atomic electrons will not contribute anything to the spin

summation on the average.

t W. Pauli, Handbuch der Phyaik, 24 a (1933), 238.

Z8696.67
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We therefore have, on changing the variables from r^, r^, to r, where

r = and carrying out the summation over the atomic electrons,

j
ex^{iKn.r)'7

where G = s A
/

V(|^ml)*exp(iiirn.rj

S being the total electron spin quantum number and the charge

density of the electrons responsible for the ferromagnetic properties

(presumably the 3d electrons) in terms of a single electronic coordinate

r^. Here we have written

A(no— Hj) = 2A:sin|0n = Kn,

fM) = Me
mhc

A G dr,

)dTi, (
90

)

where n is a unit vector.

Following the same procedure to ensure convergence as in Chap. VII,

§ 1, we have

J
exp(iirn.r)v|lj = J

V{exp('j^n

.

r)}

= iKn
j

exp(iiLn.r)

dr

r

dr

r

irri

~ ^n,

and similarly

/ '^j(l’Aml^)exp(i^n.rj) dr, = iKn
j

\4,J^exTp{iKn.r,) drj

= iKnF, say.

This gives ^Me
= ^S^inFs„.{nA.{nAs)}

(
91

)

(
92

)

2M€
mhc

Sij,^F{s„.nn.s~s„.s)

where is the neutron magnetic moment in nuclear magnetons and

q is the vector n.sn— s.

The total scattered amplitude, including the nuclear scattering, wiQ

a+Me,4>),
(
94

)

where a is the scattering length for the particular nucleus. This assumes

that the neutron beam is completely polarized with spin parallel to 8„.
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Normally the beam will be unpolarized and the scattered amplitude

must be written

to allow for the two possible spin orientations. Since the cross-section

for scattering depends on the neutron spin, polarization effects can be

produced by scattering from magnetized iron.

Although is not negligible, its contribution to the total cross-section

is rather smaller than Taking as 2*8 x 10“^^ cm., y = 1*9,

S = 5/2, and the mean value of F as about 0-1, for thermal neutrons,

the mean value oi comes out to be 1-3 X cm. as compared

with the value 8 x 10“^^ cm. for a, for iron.f We may therefore write

approximately for the scattering cross-section

Qa±P^
TT 2tT

where — 47ra2, p
J J

•
Q[shi0 d6d(j>, (96)

0 0

The form factor F is exactly similar to the atom form factor discussed

in Chap. VII, § 1, except that the only electrons which contribute to it

are those which are responsible for the ferromagnetism, presumably the

M electrons.

The existence of the term p may be verified by observing the trans-

mission of a collimated beam of neutrons of intensity through a block

of iron. If the iron is unmagnetized the intensity / of the beam after

passing through a thickness I of the block will be given by

I =: IqOxp(—NIQq), (97)

where N is the number of atoms per c.c. If now the iron is magnetized

to saturation the transmitted intensity will be

/4-A/ = Po[exp{—iVZ(^o+^)}4-exp{— ?>)}], (98)

giving a relative increase in transmitted intensity

^ = cosh(Nlp)--l

^mpHK (99)

Under these geometrical conditions

TT

p = Sa
J

Fie){ 1+ cos2 0)sin 0 d0. (100)

0

Although this result is valid with perfect saturation, small departures

t Fermi and Marshall, Phya. Rev. 71 (1947), 666.

(95)
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from that condition lead to a considerable reduction in the effect. This

is due to depolarization of the neutrons in making the non-adiabatic

passage from one domain in the iron to the next in which the magnetiza-

tion is slightly different. Halpern and Holsteinf have considered this

effect and shown that it introduces a factor /{A/(eZ)} into the expression

(99) for A///, A being a quantity related to the linear dimensions of the

domains in the magnet, e the percentage deviation from complete

saturation, and ^ 2x^{e-^i^+{llx)-l}. (101)

Experimental verification of these transmission effects has been found

by Bloch and Staub and their collaborators. J The absolute value ofp
is diflScult to predict accurately as the density distribution of the 3d

electrons of iron is not known with accuracy—the observed value is

between 2*2 and 2-3 X 10*24 cm.^ In a magnetizing field of 10,000 gauss,

A/// should be about 22*5 per cent. This corresponds to a degree of

polarization, measured by

8 = i+-7-
/++/- (

102
)

of as much as 60 per cent., /+, I~ referring to the transmitted inten-

sities of beams with spins respectively parallel and antiparallel to the

direction of magnetization.

The preparation of partially polarized neutron beams is of great

importance as an essential part of the technique involved in measuring

with precision the magnetic moment of the neutron.

§

The magnetic scattering by a ferromagnet is a relatively simple

problem as only the elastic scattering need be considered. A discussion

of other possibilities has been given by Halpern and Johnson,
||
who

also considered various polarization phenomena which might arise.

5* Collisions of fast particles with medium to heavy nuclei

As the level spacing in the excited complex formed by capture of a

nucleon (or deuteron, a-particle, or other light nucleus) by a medium
or heavy nucleus is at most of order 10 e.V., it is not possible to

distinguish resonance effects in the collisions of energetic particles with

such nuclei. Indeed, it may well occur that the state of the complex

t Phys. Rev. 59 (1941), 960.

t Bloch, Hammermesh, and Staub, ibid. 64 (1943), 47 ; Bloch, Condit, and Staub, ibid.

70 (1946), 972. See also Hughes, Wallace, and Holtzmann, ibid. 73 (1948), 1277.

§ Alvarez and Bloch, ibid. 57 (1940), 111; 57 (1940), 352; Arnold and Roberts, ibid.

71 (1947), 878.

II
Ibid. 55 (1939), 898; see also van Vleck, ibid. 55 (1939), 924.
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formed lies in the region of overlapping levels. AU that can be observed

in the cross-section for a particular process will be an average over an

energy interval containing many levels. We may therefore use the

formulae of Chap. VIII, § 8.3.

We first consider the collisions of medium to fast neutrons (1 k.e.V.

to 10 M.e.V. say), as the formation of the complex is not then influenced

by any barrier penetration effects. If the cross-section for formation

of the complex is given by the cross-section for a process in which

a particle P is emitted will be given by

= <2^^, (103)

where T = is the suitably averaged partial width for emission

of the particle P. Included among the possibilities will be emission of

y-radiation (partial width F^) and re-emission of the neutron with its

initial energy (partial width P®^). Further, if A: is the neutron wave-

(iP<l), (104a)

(A:P> 1), (104 b)

where D is the level spacing about the excited level of the complex

which is formed and R is the nuclear radius. For intermediate values

of kR it is convenient to write in the form where f is the

‘sticking probability’.

Owing to the high Coulomb potential barrier, the emission of charged

particles from the complex is usually very improbable except for the

heavier nuclei such as U235 which, in their ground states, are already

unstable towards a-particle emission and/or fission. Excluding such

cases for the present we may write

number

Q^n
k^ D

= 7tR^

r = r,+rs'+r^ (los)

where Pjf is the contribution to the total width due to emission of a

neutron with less than its initial energy, i.e. an inelastic colhsion.

If the neutron energy is not enough to excite the lowest excited state

of the nucleus (cr^ 100,000 e.V. forthe heavy radioactive nuclei), P^ = 0

and only radiative capture or elastic scattering can occur. From the

experimental data discussed in § 2.22 it appears that, for nuclei of

medium mass,
l-4£f*xl0-3 e.V., (106)

where E is the neutron energy in electron volts. P,. is of the order 0* 1 e.V,

for complexes formed by thermal capture and is not likely to change
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much with neutron energy. We see therefore that, when the neutron

energy exceeds 5,000 e.V. or so, the cross-section for capture falls

below that for elastic scattering. At such energies (104 a) is applicable,

so, taking D as of the order 10 e.V. as in § 2.2, we have

r~ 0*8 X 10“^^ cm.^ for E = 5 k.e.V.
imE D

As the neutron energy becomes adequate to produce excitation

becomes important and soon exceeds

r^. The partial width for emission of a

neutron, leaving the residual nucleus

with an excitation energy U e.V., will at

first be of the order 1-4 x 10"^(£^— ?7)*

e.V. The number of such excited states

increases rapidly with the available

energy, so the sum of the contributions

from each soon exceeds When many
levels may be excited the statistical

formulae of Chap. VIII, § 8.32, apply.

F}f is then of the order DN, where N is

the number of excited levels in which

the residual nucleus may be left after

neutron emission, whereas F®^ is of order

Z>. Furthermore, the relative proba-

bility of leaving the nucleus with a par-

ticular energy of excitation is propor-

tional to the level density in that region. It is therefore most likely

that the nucleus will be left in a highly excited state—most neutrons

will be emitted with low energy (see Chap. VIII, § 8.32). Typical

behaviour of
1"J.,

F®^ and Fjf for a heavy nucleus is illustrated in Fig. 69.

These general conclusions are in agreement with observation, though

no very detailed series of measurements have yet been carried out in

the energy range concerned.!

If we now turn to effects produced by charged particles, the same

general considerations apply to the relative probabilities of different

modes of break-up of the complex, once formed. Thus a fast charged

particle is most likely to produce a disintegration in which a low energy

neutron is emitted. This is true, even if the excitation energy of the

complex produced by capture of the charged particle is so great that

t See, however, Szilard, Bernstein, Feld, and Ashkin, Ph/ya, Rev, 73 (1948), 1307.

Fiq. G9. Schematic diagram of the

variation of the partial level widths

r^. r^, r„, with excitation energy
of a heavy compound nucleus.



XIII, § 5 FAST PARTICLES WITH MEDIUM TO HEAVY IHJCLEI 343

a charged particle of one or more kinds may be emitted with sufficient

energy to pass over the barrier. Owing to the high internal energy of

the deuteron this may often be possible in capture of such nuclei with

a few M.e.V. energy. Thus, if B is the barrier height and Ep the energy

released in emitting the charged particle P, leaving the residual nucleus

in its ground state, the only levels of this latter nucleus which are

effectively accessible as final levels after emission of P are those which

lie within an energy range Ep—P of the ground level. For neutron

emission the corresponding range will be E^. As will be comparable

with Ep, it will be much greater than Ep—B. Since the total width for

emission of a particular particle is roughly proportional to the number
of accessible final levels of the residual nucleus, and as this number

increases exponentially with the energy range above the ground state

(see § 2.1), it is clear that neutron emission will normally remain the

most important process.

Among charged particles all of which may be sufficiently energetic to

pass over the barrier, that one for which Ep—B is largest will have the

greatest probability of emission. If none can pass over, the relative

probability is determined by the combined effect of the barrier penetra-

tion and the number of available final levels. Thus, emission of an

a-particle may often occur with comparable probability to that of a

proton—the smaller barrier penetration is compensated by the great

number of available final states due to the low internal energy of the

a-particle. On the other hand, the high internal energy of the deuteron

restricts the number of final states to such an extent that a deuteron

is rarely emitted from a complex.

The cross-section for formation of a complex by capture of a

charged particle P differs from the corresponding cross-section

for formation by neutron capture, mainly through the effect of the

barrier. If the incident particle has a wave-length considerably greater

than nuclear dimensions, then Qp is given by a formula similar to ( 104 a),

but Ffi differs from by inclusion of the penetration probability

for particles of zero angular momentum viz.:

FfJ- F®*e-^. (107)

A further factor, less than unity, must be introduced when the incident

particle is not a simple nucleon. This allows for the necessity for

satisfying orientation conditions before the complex can form, an effect

which does not seem to be very important even for a-particles.

When the incident particle has a wave-length shorter than the nuclear
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radius we have, referring to the derivation of ( 104 b) in Chap. VIII, § 8 .31 ,

~ ^22 (
108

)

where is the penetration probability and the sticking probability,

for particles with I quantum units of angular momentum. If can be

taken as unity for aU I for which is appreciable, we then have in

place of
(
108

)
qc^ ^ (IO9)

where == 2
For any particular case may be calculated from the formula

(
36

)
of

Chapter III. If the sticking probability is less than unity by an appre-

ciable factor it will usually be sufficient to write

r / 1 T 1 \

where ^ is, apart from an orientation factor, practically the same as for

neutrons of the same velocity.

Disintegration of heavy nuclei by deuteron impact presents a special

case inasmuch as its exceptionally low binding energy makes it possible

for the deuteron to be broken up before the proton has completely

penetrated the potential barrier. The neutron may then be absorbed

and the proton ejected. This possibility was first suggested by Oppen-

heimer and PhiUipsf and discussed subsequently by several authors. J

It appears that, while the process is unimportant for light nuclei, it is

responsible for the relatively large cross-sections for disintegration of

heavy nuclei by deuteron impact.

6. Nuclear fission

The binding energy of a nucleus, per nuclear particle, reaches a maxi-

mum for nuclei with atomic mass near that of nickel and then decreases

again with increasing mass number. It follows that a nucleus such as

uranium is energetically highly unstable towards division into two

lighter nuclei of comparable atomic mass, i.e. nuclear fission. The
probability of such fission is normally very low because of the high

energy of the activated configuration through which the system must

pass in order to divide. In the case of the U235 nucleus the capture of

a slow neutron leads to a U236 complex which already possesses excita-

t Phys. Rev. 48 (1935), 500.

i Kapur, Proc. Roy. Soc, A, 163 (1937). 553; Ind. J. Phys. 13 (1939), 87; Kapur and
Peierla, Proc, Roy. Soc. A, 163 (1937), 606; Lifshitz, Phys. Zeit. d. Sow. Un. 13 (1938),

324; Bethe, Phys. Rev. 53 (1938), 34; Volkoff, ibid. 57 (1940), 866.
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tion energy in excess of that required to pass through the activated

state—the neutron binding energy is greater than the activation energy.

There is therefore an appreciable probability that the complex will

break up in this way instead of getting rid of the surplus energy by
y-radiation or neutron re-emission. For no other nucleus, which occurs

naturally in appreciable quantity, does capture of a thermal neutron

lead to a complex with energy exceeding that of the activated state for

fission. Neutrons with kinetic energy of the order of 0*5 or more M.e.V.

can, however, produce such superactivated complexes on collision with

certain other nuclei—in particular with U238 and Th232.

The occurrence of nuclear fission was first indicated by the discovery

by Hahn and Strassmann in 1939,f of products with the chemical

properties of barium from the reaction of slow neutrons with uranium.

The mechanism responsible was suggested shortly afterwards by Meitner

and FrischJ and a detailed theoretical discussion followed in anow classic

paper by Bohr and Whoeler.§ Although experimental results were only

available using natural uranium, the latter authors were able, from

theoretical arguments, to deduce which isotopes were responsible for

the different effects. As the methods they employed provide an excel-

lent illustration of the application of nuclear collision theory, we shall

briefly outline them here.

The experimental information available was as follows:

() Resonance capture followed by radiation!! occurs for neutrons

with energies in the neighbourhood of 25 e.V., the cross-section being

1*2 X cm. 2, averaged over the resonance region.

() The absorption cross-section for these neutrons measured by the

method of self-indication, is l*2xl0~2i cm.^ This cross-section Qg is

related to the cross-section at exact resonance, bytf

where A is the Doppler width and T the true width of the resonance

level. The function / reduces to unity when F ^ A and equals ^tt^A/F

when A F. We therefore have:

Maximum cross-section == 2*4 X 10“^^ cm.^ (A <r),

= 3-0X 10-*“iA/r cm.2 (A > P). (113)

For uranium A = 0'12 e.V.

t Naturwiss.27 (1939), \l. J Nature, 143 (1939), 239. § Rev. 66 (1939), 426.

II
The observed result was the production of /3-activity but not of any elements other

than uranium, in contrast with the effects produced by thermal and by fast neutrons,

tt Bethe, Rev. Mod. Phys. 9 (1937), 140.
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(c) For radiative capture of thermal neutrons the cross-section is

1-2x10-24 cm.2

(d) In the resonance range the fission cross-section is <0-1 of that

for radiative capture.

(e) Thermal neutrons produce fission, the cross-section being between

2 and 3x 10-24 2

(/) The cross-section for fission by slow neutrons varies as up to

energies of a few e.V. at least, v~^ being the neutron velocity.

{g) Neutrons with energy between 2 and 3 M.e.V. also produce

fission, the cross-section being about 0-5 X 10 ”24 cm. 2 and varying only

shghtly over this energy range.

6.1. Resonant radiative capture

Natural uranium is a mixture of three isotopes, U238, U235, and

U234 with abundance ratio 1:1/139:1/17,000. The maximum cross-

section, tt/P, for capture of a 25 e.V. neutron is 2-5xlO-2o cm .

2

It

follows from (6) that only the abundant isotope can be responsible for

the radiative capture. By following an exactly similar analysis to that

used in § 2.22 it follows that I^, the partial neutron width, is equal to

rjiO r/40 or to A/40 according as F ^A or A respectively.

Since A is 0-12 e.V. it follows that F^^ > 0-003 e.V. From the analysis

of data for capture of nuclei of medium atomic mass F,, would be

expected to be of order 0-01 e.V. (i.e. 1-4 x 10-2x25*) for a resonance

energy of 25 e.V. As it should be smaller rather than larger for a heavy

nucleus such as uranium, F^^ may be taken as 0-003 e.V. IJ. cannot

then be greater than 0-12 e.V., but is probably not much smaller as

judged from experiments with lighter nuclei.

With the estimated values for F^ and F,. the cross-section for radiative

capture of thermal neutrons can be derived if only the one resonance

level is responsible. Thus

(thermal) = (tt/P) F^ (thermal) F,./jE'f^. (114)

As F^ is proportional to the neucron velocity, F^ (thermal) may be

obtained, giving

Gy (thermal) cr: 0*4 X 10-24 cm. 2 (1^^)

Referring to (c) it will be seen that this value is roughly J of the

observed, suggesting that more than one level is responsible. Allowing

for the influence of levels both above and below thermal energies, the

factor 3 suggests that the level spacing D, in the U239 complex, is of

the same order as the observed resonance energy, about 20 e.V.
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6.2. Slow neutron fission

Turning now to fission by slow neutrons it is easily seen that it cannot

be due to the abundant isotope. From {d) it follows that the partial width

for fission is < at the resonance level. As 1} will decrease, if anything,

with the neutron energy (see § 6.3 below) it follows from (c) that the

cross-section for fission of U238 by slow neutrons is < 1*2 x cm.^,

over 20 times smaller than the value observed for natural uranium.

The fission cross-section Qf for thermal neutrons must therefore be

between 3 and 4x10 ^2 cm. 2
,
or between 3 and 4 X 10“^® cm.^, according

as it is due to U235 or U234 respectively. Two possibilities must now
be considered—either the excited complex lies in the region of separated

or overlapping levels.

In the former case the effect is principally due to a single resonance

level and

Qf--= —

in the usual notation, 1} being the width due to fission. P^ should be

nearly the same for all three isotopes, so it may again be taken as

10“^ c.V. for thermal neutrons. In order that (/) be satisfied either

or I P or both must be greater than a few e.V. Substituting numerical

values and remembering that P > I}, it is found that, if U234 is the

isotope responsible, both P and Ei^ must be much smaller than 1 e.V.

(taldng5 = 0 and the upper sign in (116), P < 4/17 e.V. and <2/17
e.V.). This possibility may therefore be excluded.

No such contradiction appears if the effect may be ascribed to U235.

For different assumptions as to the spins it is then found that: (i) for

5 > |, P < 13 e.V., \Ej^\ < 3 e.V.; (ii) for s ~ and the lower sign

P < 7 e.V., \E^\ < 1*7 e.V.; (iii) for 5 J and the upper sign, P < 20

e.V., \Ei^\ < 5 e.V. Further, since either \Ej-i\ or |P must be 1 e.V. or

greater, r/>]0e.V.

There is no inconsistency here except possibly if the conditions (ii)

apply. On the other hand, 1} must be of the order of the level spacing,

which, as estimated from the radiative capture, is about 20 e.V. for

the excited complex formed from U238. No difference in order of

magnitude would be expected for U235. It is therefore necessary to

consider the further possibility, that the excited complex falls in the

region of overlapping levels. In that case, we have

r„r/
(
116

)

Qf
— 2^1;
P D' (

117
)
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This is satisfied for U235 with D = 20 e.V., but for 17234 to be respon-

sible D would have to have the impossibly small value of 0*4 e.V.

It may then be concluded that the slow neutron fission is due to 17235,

from which a complex excited to the region of overlapping levels is

formed. However, the possibility that the effect arises from a single

isolated level cannot be ruled out on the basis of the data listed above.

In either case the fission width 1} must be at least of the order 10 e.V.

6.3. Theoretical estimate offission width

As a further check on the validity of these arguments it is of interest

to consider what value 1} might be expected to have. Fission involves

the relative motion of two heavy, slow nuclear fragments, so classical

arguments may be applied. In particular, the transition state method

(Chap. VIII, § 8.4) may be employed. The problem is the one discussed

in § 8.4; and we have ^
(118)

where V* is the number of levels available in the transition state

through which the configuration of the system must pass in order to

divide. If we assume that the level distribution in the transition state

is similar to that for a normal nucleus, iV* is likely to be of order unity

when the compound nucleus formed by slow neutron capture has an

energy greater than that necessary to carry the system over the transi-

tion pass by 50 to 100 k.e.V. A value of 1} comparable with 10 e.V. is

therefore quite reasonable.

6.4. Fast neutron fission

It remains to consider the fission by fast neutrons. This cannot be

due to either of the rare isotopes. At the energies concerned the

neutron wave-length is small compared with the nuclear radius

(9-5x10“^® cm. for 17). The capture cross-section cannot then be

appreciably greater than (Chap. VIII, § 1) whereas, even if 17235

were responsible, it would have a cross-section (see {g) above) as large

as 7 X 10“23 cm.2, 25 times greater than the maximum.
No difficulty arises in associating the fast neutron effect with U238.

As we are certainly concerned with the case of overlapping levels

Qf 7tB^
^/D

mD+rjD‘
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VJD is equal, on the average, to the number of levels in the U238

nucleus which may be excited by a fast neutron. It will increase rapidly

with the excitation energy of the U239 complex formed, i.e. with the

neutron energy. In a similar way I}/i) will increase rapidly with neutron

energy from a zero value when the excitation energy of the U239 com-

plex is less than the activation energy for fission. As the ground level

from which is reckoned lies higher than that foriV^j
,

will normally

be greater than 1}, though it will vary with neutron energy in much the

same way when the excitation energy is considerably in excess of that

required for fission activation. This is consistent with (gr) which requires

I}/r^ The energy variation of the fast neutron fission, referred to

in [g] above, indicates that the activation energy for fission of U238 is

less than 2 M.e.V. above the neutron binding energy.

Pig. 69 illustrates the way in which the different partial level widths

I}, r®/, r„, vary with the excitation energy of the compound nucleus,

based on the above and preceding discussions of neutron capture

phenomena.

These various conclusions have been justified by further experiments,

even though the numerical values may have been altered in detail.

Bohr and Wheeler were not only able to interpret the observations in

the manner described above, but also showed that, if the current semi-

empirical formulae for nuclear energies were used, the activation energy

for fission of U236 should indeed be less than, and that for U239 greater

than, the neutron binding energy. They also made predictions as to

the fissile properties of other heavy nuclei.

References to recent work on analysis ofhigh energy collisions between neutrons

and protons (see footnote p. 302) :

—

J Camac and Betho, Phys. Rev, 73 (1948), 191 ;
Eisenstein and Rohrlich, ibid. 641 ;

Ashkin and Wu, ibid. 973 ; Wu, ibid. 1132 ; Massey, Burhop, and Hu, ibid. 1403 ; Burhop
and Yadav, Nature 162 (1948), 738; Chew and Goldborgor, P?iys, Rev. 73 (1948), 1409;

Holmberg, KungL Fysio. SdUskapets i Lund Fdrhand. 18 (1948), 1.



XIV

TRANSITION PROBABILITIES BY METHOD OF
VARIATION OF PARAMETERS

1. Introduction

The problems of quantum mechanics may conveniently be divided into

two classes: the calculation of the eigenvalues of the energy and of the

other observables of a dynamical system; and the calculation of the

probability that a system will make a transition from one state to

another under a given perturbation. Our aim in this chapter is to

summarize the methods available for the solution of the latter class of

problem. The previous chapters have been mainly concerned with the

calculation of a particular type of transition probability, namely, that

between two states of equal unquantized energy, due to a perturbation

(interaction between atom and colliding particle) which is not a function

of the time. For this type of problem we have found it convenient to

use a periodic wave function, containing the time in the exponential

factor exp(— 27riTr^//i-) only. In this chapter we consider methods for

the calculation of transition probabilities between states one of which

is quantized; for such problems a periodic wave function cannot be

used, and the ‘Method of Variation of Parameters’ must be employed.

f

The transition probabilities calculated in this chapter may be divided

into two classes in the following way:

I. Transitions, due to a perturbing field which is not a function of

the time, from a quantized state to an unquantized state of equal

energy. Examples of this kind of problem are: Gamow’s theory of

radioactive decay;| the Auger eflect;§ the spontaneous dissociation

of a molecule in a high rotational state. Perturbation theory is parti-

cularly suitable for the solution of this kind of problem, because, if the

perturbing field is not ‘small’, it is impossible to use the conception of

a transition probability. This may be seen most easily by reference to

the Auger eflPect, where one has to calculate the probability that if two

electrons are in excited states in one atom, one of them will fall to the

ground state, giving up its energy to the other electron, which is thereby

ejected from the atom. The ‘perturbing energy’ is here the interaction

potential energy of the two electrons; if this is not ‘small’, so that the

t The method was first given by Dirac, Proc. Roy. Soc. A, 114 (1929), 243.

J Atomic NiLclei and Radioactivity

^

Oxford, 1931, p. 30.

§ Auger, J. Phys. Rad. 6 (1925), 205.
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probability is small of the transition taking place in a time equal to

the period of the atom, then it is meaningless to speak of the electrons

as being initially in definite stationary states.

This is not true of transitions between two unquantized states. For

such problems the validity of the perturbation method depends on the

quite different considerations discussed in Chap. VII, § 2, and elsewhere

in this book.

II. Transitions due to a perturbing field which is a function of the

time. Here the initial and final states may be of different energy. Both

the initial and final states may be quantized or unquantized. Examples

are: the excitation and ionization of an atom by collision with an

a-particle, when the c^-particle is treated as a moving centre of force;

the absorption of radiation and the photoelectric effect, when the light

wave is not treated as a quantized field.

Transitions under the heading I may be considered as a special case

of II. We shall therefore consider transition probabilities in the fol-

lowing order:

Transitions caused by a perturbing function which is a function of

the time:

() Final state quantized.

() Final state in range of continuous energies.

Transitions caused by a perturbing function which is a periodic

function of the time.

Transitions caused by a perturbation independent of the time.

2. Excitation of an atom by a perturbation which is a function

of the time

For simphcity we take for the unperturbed system a single electron

moving in the field of an infinitely heavy nucleus. Let r denote the

coordinates of the electron, H the Hamiltonian of the unperturbed

atom, and ^^^(r), Wg the wave functions (not functions of t) and energy

values of the stationary states, satisfying the equation

(
1

)

We suppose the system to be perturbed by an energy term F(r,^), and

the atom to be initially = Iq) in the state 5 = 0
,
the wave function

being therefore initially

tffo{r)ex-p{—2niWjlh). (2)

At any subsequent time let the wave function be T*{r,f); then T* may
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be determined from the initial condition (2) and from the wave equation

(3)
27^^ dt

To interpret W we expand it in the form

nr, <) = I a,{t)Ur)exY,{-2niWJlh), (4)
8

and make the assumption that |a,(^)|^ is equal to the probability that

the atom is in the state s at time t (for quantized states; for unquantized

states cf. § 2.1). We have therefore to calculate the coefficients

Substituting (4) in the left-hsbiid side of (3), we obtain

«
L J

which is therefore equal to FT. Hence, if we multiply both sides of

this equation by any one of the functions i/r*(r)exp(+ 27riFfl^/A) and

integrate over all r, we obtain

= -^exp{2mW,tlh)
j

0*(r)F(r, <)T(r, i) dr. (5)

Initially, at time t = (q, all the are zero, except for which is equal

to unity; hence, integrating (5), we obtain, if 5 0,

t

^ J
dt^xp{2mWjlh)

J
ili*{r)V{T,ty¥{r,t) drj. (6)

tu

This equation is exact. It cannot, however, be used to evaluate

since the right-hand side contains the unknown function T. If, how-

ever, it is permissible to assume that during the perturbation T(r,

is only slightly different from its original form, we may replace T by

0o(r)exp{— 27riffJ^/A) in the right-hand side of (6), and write

t

= “X /
Ut)^MMWs-Wo)tlh} dt, (7)

u

where T^{<) = J
^*(r)F(r,«)^o{r) dr. (8)

It is permissible to make this approximation if the perturbing energy

is ‘small’. The significance of this statement depends on the type of

perturbation under consideration. We consider first the perturbation

due to a heavy charged particle of charge E passing the atom, the

particle being treated as a moving centre of force.
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If the nucleus of the atom is at the origin, and the position of the

perturbing particle at time t is

then 0 = —€^/|R--rl. (9)

The probability that the atom will be left in the state s after the

collision is |a^(oo)|^, where
-1-00

a,(co) = -X J
dt. (10)

— 00

The perturbation method is vahd here if the wave function is only

slightly perturbed during the collision. This is obviously true for distant

collisions, and may be shown to be true for collisions in which the

particle passes through the atom, if its velocity is so great that the time

during which the perturbation is effective is small. The method is also

valid if the charge E on the particle is small compared with Ze. A
necessary condition for the validity of the approximate method is

2 Kco)!* < 1.

The condition is not sufficient; for instance, for very slowly varying

perturbations, ajii) may be comparable with unity during the collision,

even though a^>(oo) is small.

f

If the perturbation is due to a hght wave, we require to find the

probability, that the atom is excited to the state s in time A^.

Writing T = P, the probability after time i that the atom remains

in its normal state is then it being of course assumed that spon-

taneous emission of radiation does not take place. The perturbation

method will thus be valid for i such that

8

Such perturbations are considered further in § 3, and it is shown that

the method always gives an accurate value of i^, unless the light wave

is of intensity great enough to excite the atom in a time comparable

with l/v, which is in practice never the case.

2.1. Ionization of an atom by a perturbation which is a function of the

time

The wave function T(r, i) describing the atom after the perturbation

must contain terms which describe ionized states of the atom. The

t Cf. Chap. VIII, § 6.1.

A a3595.67
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expansion (3) is thus not complete; we must replace it by

'F(r,/) = 2 J c^H^(O^PF(r)exp(-— 27rtir^/A) dJV,

(11)

where the functions ^jp(r) are the solutions of (1) for positive energy.

These solutions are of the form

Mr) = S-{e,<f>)NL^,y{r),

where is the normalized spherical harmonic given by

— [{2n+l){n-—u)\li7T{n~{-u)l]^P^(co8 6)e'^^^,

and L is the radial part of the wave function normalized so thatf

[Chap. II, eq. (15)]

L ~ (ir)“^sin(iT—

and iV' is a constant. In (11) a summation over all values of n, u is to

be understood. If we set

N = N{W) = 2k{hv)-^, (12)

then it may be shownj that the function 0 defined by

]KnjT)4>wUT)dr^-G{W,R),

where the integration is over a sphere of radius R, has the following

property: if/(If) is any function of W, then

lim f 0(W, R)/(W) dW = f{W').
JB-kd J

iction G[W,R) is convei

(?(ir,oo) = S(lf-H^'),

This property of the function G[W, R) is conveniently expressed by the

statement

where 8 is the ‘S-function’ of Dirac.§

Making use of (12), it is easy to show that

t

aw{t) =~
J

fHo(<)exp[2^If-Tfo)</A] dt. (13)

u

The wave function may be deduced from (11).

We shall now deduce from the wave function (11) the probability

that the electron is ejected from the atom. We shall suppose that the

perturbing function is operative only from time ^ = 0 to time t — T.

We shall calculate the probability, P that, during this time

interval, the electron is ejected in a direction lying in a soHd angle dco

t The term {27rZ€*lhv)log2kr which occurs for Coulomb fields is omitted,

t Sommerfeld, Wave MechanicSy p. 290,

§ Qtuintum Mechanics

y

3rd edition, p. 68.
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about the direction given by the unit vector n, and with velocity lying

between

For this purpose we investigate the asymptotic form of T(r, t) for

values of r, t given by r = ni?0 1 for values of the time t so long after

the perturbation has ceased that

t dvQ > Tvq.

Under these conditions it is clear that

Pdvodo) - \Y\h^drdaj

= \W\HHldv^dw. (14)

The right-hand side must be independent of ty and we shall show that

this is the case.

We have then to investigate
(
11

)
for large r, t. The coefficient

given by (13) tends to a constant value as < -> oo, since the perturbing

energy V is assumed to be finite only in the time interval 0 a t < T.

Replacing by its form for large r, we see that the only terms in

the integral in
(
11

)
which involve r, t are

sin(^r—

which may be written

(
2ikr)-^ j^expj^^^{vr—\vH)— \n7Ti+

—

_exp{?^(-w-^t;2i)+
. (15)

The range of integration in
(
11

)
is from IT = 0 to If = oo, and hence

from = 0 to t; = 00 . The first of the two terms in ( 15) has a stationary

pointf in this range, for v ~ rjty and, for r, t sufficiently large, the whole

integral comes from the neighbourhood of this point. f The second term

in (15), which corresponds to an ingoing wave, has no such point in the

range, and therefore makes a contribution to the integral of higher

order in Ijt. It may therefore be neglected.

The first term in (15) may be written

(2iA;r)-iexpj^?^{— ro)*+{vo»'— (16)

where == rji. Making use of the formula

-f CO

I
exp(i^^*) dC = (njiA)* (C — Vq. -4 = —Trmljh),

— 00

f i.e. the function is said to have a stationary point for any value of v for

which f'(v) = 0. The theorem quoted may easily be proved by deforming the path of
integration into the complex plane.
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we obtain from (11), putting dW ~ mv dv,

ITI ~ 2 a,y,nu{^WWo)(2ikar)-^{h/naYmVoexp(—lnTn+ir]„)8l{e, ,

n,u

where Wq — etc.

This may be written

(17)

where /(0, == [hlv^y 2 2 exp(iij„— Jw7ri)-S“(0, ^)c%.„„{co),
n tt

and where r = v^t. It will be seen that is proportional to

From (14) we deduce that

P dv^dco = [mvljh)\f[6,(j>)\^ dv^dco. (18)

Further, integrating over all
6y<f>y we find that the total probability

that a particle is ejected with energy between W, W+dW is

lll<^wnuH\^dW. (19)
n u

An alternative form may be given for/(^, ^). Inserting the formula

(13) for in (16) and referring to formulae Chap. II, (16), and

Chap. VI, (24), we obtain

4- CO

J
dr'

J
ci<g(r',,T-0)F(r',<)0o(r')exp[27ri(lf-lFo)<A].

— 00

Here cos© = cos 0cos0'+sin 0sin ^'cos((/>— 0'), (21)

and ^) is the function discussed in Chap. II, § 1, i.e.

= 2 (2w+l)i^e''’?"P;,(cos0)L^(r),
n

which has asymptotic form

g ~ e^^^+r”V*^^X function of 6,

The function tt—Q) thus represents a plane wave in the opposite

direction to 0,^ together with an outgoing wave, and is thus not the

complex conjugate of the wave function of the final state. It is only

when the influence of the nucleus on g may be neglected (fast electrons,

small atomic number, 2TrZe^lhv 1), so that g(r', tt—0) may be replaced

by exp(— ifcn.r'), that g may be considered as the complex conjugate

of the final state.f

3. Transitions due to a perturbing function periodic in the time

We take for the perturbing potential

F(r, t) == Ai7(r)e-2^^»'^+A?7*(r)c2’^^»'^ (22)

where i7 is a function of r but not of t, and A is a parameter. Assuming

t See Chap. Ill, p. 49, note at end of § 2.
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that the perturbed system is in the state 0 at time ^ ~ 0, then at time

t the wave function is, from (13),

2 — 27ril^^/A)+ r a^{t)iljj^[ryx^{~2'niWtjh) dW

,

(23)
a •'

where

_ex^[2ni{W,-W,-hv)tlK\-\
®»

fir iif ir.W-W^-hv
exp[27ri(WJ- 1 ^

w,-w^+hv ” **’

and U^=\4‘*s{^)U{T)UT)dr,

(24)

(25)

with a similar expression for aj^.

In order to obtain results of physical significance in problems where

V is periodic, one must take t, the time during which the perturbation

acts, to be great in comparison with 1 /v. One requires the probability

per time Aif (A^ > Ijv) that the atom will be excited or ionized,

in contradistinction to the problem considered in §2.1, where the

probability of excitation during a single event (collision) was required.

Denoting by P == 2 ^he total probability per unit time of excitation

or ionization, then the probabihty that after time t the atom is still in

its normal state is The perturbation method used (cf. § 2.1) to

obtain (25) is only correct for values of t such that this probability is

not very different from unity, i.e. if

P^ < 1. (26)

However, if the perturbation is due to a light wave, Pg will be pro-

portional to its intensity, i.e. to A^, and in calculating Pg we may take

A as small as we please. Thus it is always possible to choose t so that

(26) shall be satisfied, consistently with the inequality Ijv, The

perturbation method thus gives accurate results for intensities of per-

turbing field such that P is proportional to A^, which is the case for aU

light waves.

The method of interpretation depends on whether the final state is

quantized or whether it lies in the range of continuous energy values.

In the former case the transition probability does not increase

with the time, imless v is equal to where

this case it increases with the square of the time, as may easily be

seen from (24). To obtain a result of physical significance one must

assume that the perturbing field is not strictly monochromatic, but
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consists of a large number of fields of different frequency in the neigh-

bourhood of superimposed on one another. The transition proba-

bility is now obtained by integrating with respect to y over the

critical value We write in (22) — dy. The second term in (24)

clearly contributes nothing of importance (if > Wq), and we obtain

for the transition probability

r 2[l-cos{2n(W,-W,-/ir)t/A}]

J [w-w^-hvY
““ ^ •

As t becomes large, the main part of the integral comes from the neigh-

bourhood of V = t/go* The integral reduces tof

(27)

The Einstein B coefficient (absorption coefficient) may be calculated

in this way.f

If the final state lies in the range of continuous energy values, we

may use the method of § 2.1. Thus we consider that the perturbation

acts during a finite interval of time T, where vT ^ 1, but FT 1.

Then, from (24), jajj/(T)j^ dW is the probability that the electron is

ejected with energy between W, W-\~dW, This function has a strong

maximum for W — WQ-\-hy, The total number of electrons ejected with

all energies is

J
\c^{T)\'^dW =

J
dW. (28)

As yT 00
,
practically all the integral comes from the neighbourhood

of IF = WQ-\-hy, so that (28) may be replaced by§

4772r|ACVol7A, W = W^+hy, (29.1)

which is the required probability that the electron is ejected in the

time T, Similar^, the number of electrons ejected into the solid angle

dto is, per unit time, from (18), (20),

V ^Jg(r',7r-0)AC7(r>„(rVT'
2

d(x). (29.2)

f We make use of the formula
00

r 1— cosa: ,

J
=

— 00

J For further details the reader is referred to Mott and Sneddon, Wave Mechanics
and its Applications, p. 255.

§ N.B.—The h5^rbolic wave function used in the evaluation of is normalized as

in eq. (12) of this chapter.



XIV, §3 PERTURBING FUNCTION PERIODIC IN THE TIME 359

Bethef has shown how to interpret the wave function (23) without

using the expedient of a perturbation that acts only in the time interval

0 < t < T, In formula (23), if r be a point outside the atom,

vanishes and may be replaced by its asymptotic form

~ 2{hv)-ir-^8m{kr—^mr+T]^)8^(e,<l>).

Using this expression for we shall show that, so long as ^ 1, the

wave function (23) corresponds to an outgoing wave of finite amplitude

for r <,vt and vanishing for r > vt.

For points r outside the atom, we have from (23), (24)

r 1 p-2fri(W~W9-hv)tth

nr, 0 ~ I J
X

X {kr)-^N{W)8m{kr-^n7T+7j„) dW. (30)

In this integral we make the substitution

2^{w-w;)tih ^ f,

so that k — 27T{2mWYIh — A:^+^M4-0(l/<^).

Here is written for Wq-\-1iv, k^ for 27T[2mWJ)^lh, If vt is large, the

integrand in (30) has a strong maximum for IF = and (30) can be

replaced by

'F - I f (31)
n.w J b

The integral on the right is equal to

—
J (32)

Now ii A, B are real numbers,

J
= i

J— 00 —00

which is clearly equal to 0 if ,4, J5 have the same sign, and to 27ri if

they have opposite signs. Hence the second integral in (32), which

represents the ingoing wave, vanishes; the first integral vanishes if

r > vt, and is equal to 2rri if r < vt. Hence for (31) we may write

T~ {
2kTY^e^r~2mwm2rrN{W) 2 exp(i77,- Jn7ri)5f;{(0

,
{r < vt)

n,u~ 0 (r > vt).

Formulae (29.1), (29.2) for the number of electrons ejected may easily

be deduced.

t Ann, der Phye, 4 (1930), 443.
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3.1. Ionization of a hydrogen atom by a light wave

If we take for the scalar and vector potentials of the light wave

O = complex conjugate,

A — complex conjugate,

then we have for the perturbing term the operator

V[T,t) = C7(r)e~^^^‘*'^+complex conjugate,

U{t) — —€^+{^A/27Timc)a.grad (Schr5dinger)

~ (Dirac).

For a plane-polarized wave along the 2-axis one may take

^ = 0
,

a^ = ae^^^, 0 .

Hence C^o = fiTTimc J dx

If the hght wave has wave-length long compared with the radius of the

atom, may be replaced by imity.'l'

4. Transitions caused by a perturbation which is not a function

of the time

The formulae of the preceding section are at once applicable, by

putting V = 0. Since in § 3.1 transitions were possible only to states

of energy W^^hv^ where Wq is the initial energy, it follows that transi-

tions are only now possible to states of energ}^ Wq. Energy is therefore

conserved in such transitions, as may be seen from the physical nature

of the processes involved.

4.1. Final and initial states unquantized. Scattering of a beam of

electrons by a centre offorce

We make use of formula (29.2). For we take a beam of electrons

normalized so that one electron crosses unit area per unit time, so that

= t;-*exp(ijfcno.r).

U[r) is the potential energy of the electron in the field of the scattering

centre. reduces to exp(—iin.r'), where n is a unit vector

in the direction Thus (29.2) reduces to

^ Jexp[iA:(no-n).r']?7{r')dT'^

t For the application of these formulae to the calculation of the photoelectric effect

cf. Sommerfeld, Wave Mechanics, p. 177, and Heitler, The Theory of Radiation, 2nd
edition, p. 119.
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which is the formula obtained by the first approximation of Born’s

method [Chap. VII, eq. (5)].

4.2. Initial state quantized, final state unquantized

We take for our example a non-relativistic theory of the internal

conversion of y-rays. We suppose an a-particle in the nucleus, co-

ordinate R, is in an excited state described by a wave function x^(R),

and an electron in the atom in the normal state in the K level, described

by a wave function 0./(r). We require the probability per unit time

that the a-particle jumps to its normal state (wave function y^(R)),

giving up its energy to the electron, which is thereby ejected. If

F(r,R) = -2e^l\R-r\

be the interaction between them, then by (23) this probability is

where represents the wave function of the final state normalized as

in equation (12), and the summation is over all possible final states

with the requisite energy.

The escape of an a-particle from a radioactive nucleus has been

treated by this method by Born.f

t Zeits.f. Physik, 58 (1929), 306.



XV

RELATIVISTIC TWO-BODY PROBLEMS—RADIATION

It is not our intention in this chapter to discuss the various difficulties

associated with the relations between quantum mechanics, electro-

dynamics, and the special theory of relativit}^ These are intimately

bound up with the concept of, and technique for, dealing with radiative

phenomena. In this book we restrict ourselves to the discussion of

colhsion processes in which radiation, involving emission and absorption

of particles, does not occur. We continue largely to maintain the

discrimination in this chapter, which is mainly concerned with collisions

between two particles under relativistic conditions. Nevertheless, we

show briefly how the technique, which we have developed for dealing

with non-radiative phenomena, may be applied also to radiative pro-

cesses. The formulae obtained are identical with those normally used

for such problems, derived by the method of variation of parameters,

so reference may be made to standard works on radiation phenomenaf

for a discussion of the applications.

1. Relativistic quantum mechanics. Use of retarded potentials

The work of DiracJ provides a complete relativistic theory of the

motion ofa single particle (proton or electron) in an electromagnetic field.

Dirac’s theory has been applied to the h3^drogen atom,§ to the nuclear

scattering of fast electrons,
||
and to the interaction of an electron with

electromagnetic radiation ofhigh frequency.!t fhe otherhand, a com-

plete relativistic theory of problems involving the interaction of two or

more particles is, at present, lacking. However, there is a certain limited

class of such problems which may be solved; namely, the calculation

of transition probabilities under conditions such that first-order per-

turbation theory (first Born approximation) is valid.

In order to illustrate the method by which such transition proba-

bilities may be calculated, we shall consider the following problem

(Auger effect). In a heavy atom a K electron has been ejected; there

is therefore a finite probability that an L electron will faU into the K
t Heitler, The Theory of Radiation^ 2nd edition, Oxford (1945).

t Proc. Roy. Soc. A, 117 (1928), 618, and Quantum Mechanics^ 3rd edition, Chap. XI,

§ Darwin, Proc. Roy. Soc. 118 (1928), 654; Gordon, Zeits.f. Physik, 48 (1928), 1.

II
Cf. Chap. IV, § 4, of this book.

tt For the Compton effect cf. Klein and Nishina, Zeita. f. Physik^ 52 (1929), 893, and
Heitler, The Theory of Radiation^ 2nd edition, Oxford (1945) p. 146; for photoelectric

effect cf. Hulme, Proc. Roy. Soc, A, 133 (1931), 381 ; Sauter, Ann. der Phys. 9 (1931),

217 ; Heitler, loc. cit., p. 119.
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ring, giving up its energy either to a light quantum or to one of the

other atomic electrons. We shall calculate the probability that the

L electron gives up its energy to an optical electron.

The method we shall use precludes the possibility of using anti-

symmetrical wave functions for the initial or final states. We shall

treat the electrons separately, denoting by R the position of the inner

electron, by wave function of its initial state in the L ring,

and by Xf{^) final state in the K ring. We denote the wave function

of the initial state of the optical electron by ^^(r) and the final ionized

state by ?A/(r). The effect of the antisymmetry is considered at the end

of this section.

The inner electron can return to the K level either by giving up its

energy to the electron, or by emitting a quantum of radiation. The

probability per unit time of the latter event is denoted by the

Einstein A coefficient. According to any completely non-relativistic

theory (c -> oo) the A coefficient is zero, since in the absence of a radia-

tion field the atom will stay in the excited state for ever. Diracf has

been able to accoimt for the A coefficient by treating the radiation

field as an assembly of light quanta obeying quantum-mechanical laws.

Before the formulation of Dirac’s theory the A coefficient was obtained

in the following way.J

The radiating system—in our case the L electron—is treated as a

classical charge distribution, of density

pf^ exp(
— 2TTivf^ t) -fcomplex conj

ugate, ( 1

)

where
pf^
= -exjxi-

The current vector corresponding to this charge density is

j exp(

—

2TTivfi t) -fcomplex conj
ugate,

where

J/i: = (Dirac’s equation)

= gradxf— X/gradx?) (SchrOdinger’s equation).

On the classical theory such a charge density will give rise to an oscil-

lating electromagnetic field, radiating energy. The energy radiated per

unit time may be calculated. If we divide this by the energy of a light

quantum, we obtain a formula for the A coefficient.

It is clear that this method of calculating the A coefficient is an un-

satisfactory mixture of classical and quantum mechanics; nevertheless

t Proc. Roy. Sor. A, 114 (1927), 243, and Qiiantum Mechanics, 3rd edition, p. 244.

j Cf. O. Klein, Zeits.f. Physik, 41 (1927), 407.
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it is along these lines that we must proceed in order to obtain a

relativistic theory of the interaction of two particles. We proceed to

find the field due to the oscillating charge density (1).

By classical electromagnetic theory the scalar potential O and vector

potential A due to this charge density are given by the diflFerential

equations
, ^2(T)

(
2 . 1

)

-^j/iexp(-277iv/f «)+...
.

(2.2)

To obtain a particular integral we set

+ complex conjugate, (3)

and obtain 477

~

(4)

etc. The solution of this equation, representing an outgoing wave only,

is . j

'^ =
J

®xp(27r{v;f |r-r'|/c)/)/i(a:', y’, z’) dr’. (5)

Taking the asymptotic form of (5), we obtain, for large r,

O ~ r-iexp{27riv/i(r/c—
<)} J

exp(— 277»V/f n.r7c)p/,.(a;',?/', 2 ') dr'+...,

where n is the vector r/r. A similar expression is obtained for the vector

potential; the rate of emission of energy may thus be calculated.

In order to obtain the probability that the L electron will give up

its energy to the optical electron, we proceed as though the field O, A
given by (5) were in fact present, and calculate its effect on the optical

electron by the method of Chap. XIV, § 3. The probability of ejection

increases with the time, only if the energy received by the electron is

equal to The probability per unit time is then (Chap. XIV,

eq. (29.1)) - 2

T'lJ
> (®)

where iff^ is the wave function of the final state of the electron, nor-

malized to represent one emitted electron per unit time.

If we make c -> oo in (6), we obtain

a = 0,

and hence (6) reduces to the non-relativistic formula, Chap. XIV, eq. (33).

C> = <f>(x,y,z)exp{— 2':riv^it)

A = a{x,y,z)exi){—2mv/it) /
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With this method of treatment it is meaningless to inquire whether

the optical electron is ejected by direct interaction with the L electron,

or whether a light quantum is first emitted and then re-absorbed.

Both processes are included in (6).

Formula (6) takes no account of the antisymmetrical property in

non-relativistic quantum mechanics. We can obtain a formula which,

as c -> 00
,
tends to the non-relativistic formula with antisymmetrical

wave functions. Let us denote by \A\^ the expression (6). \A\^ is the

probability that the L electron falls to the ground state, and the optical

electron is ejected. Similarly we can find the probabiUty \B\^ that the

optical electron falls to the ground state, and the L electron is ejected.

The required expression is

\A-B\\

which is probably the correct expression for the number of electrons

ejected of both kinds. The expression must be summed over all

possible final states.

Calculations on these fines for the Auger effect have been carried out

by Massey and Burhop,t to whose paper the reader may be referred

for details.

2. Relativistic treatment of collision problems

The excitation and ionization of atoms by fast electrons may be

treated by the method of § l.J We shall consider the problem of a beam
of electrons incident on a hydrogen atom in the normal state, with

wave function 0^(r)exp(— 27ri£^^/A). We require the probability that

an electron is scattered in a given direction after exciting the atom to

a state with wave function 0^(r)exp(— f/A).

As in § 1, the interaction between the two electrons is treated as a

small perturbation. For the unperturbed wave function of the incident

electrons one should take, therefore, the wave function for a stream of

electrons scattered by a nucleus (Chap. Ill, eq. (23)). Since, however,

~ c, e^jhv 1, so that this may be replaced by a plane wave, to the

order to which we are working [neglect of (e^/Ac)^, cf. § 3]. We therefore

take for our zero-order wave function Xi^ ^ plane wave normalized to

give one electron crossing unit area per unit time, so that

X,(R) = v-iex]^{2TTi{piZ—Wt)lh}.

For the corresponding wave function with Dirac electrons, cf. Chap. IV,

eq. (12).

t Proc. Roy. Soc. A, 153 (1936), 661.

The method is due to MeUer, Zeita.f. Phyaik, 70 (1931), 786.



366 RELATIVISTIC TWO-BODY PROBLEMS—RADIATION XV, § 2

To obtain the probability of scattering we treat the atom as a varying

charge distribution of density (cf. (1) above)

-e^;{r)^,(r)exp{2«(-E'/-^i)W. (7)

with a corresponding expression for the current; we then calculate the

effect of the field of this charge on the incident beam of electrons. The

method is that of Chap. XIV, § 3. The theory predicts that electrons

will be scattered with energies W—E^+E^. One must not add the

complex conjugate term to (7), for this would predict the presence of

electrons scattered with energy W-E^-^-Ef, more energy than they

had initially,t

The field due to (7) cannot be interpreted as the field radiated by

the atom, as in § 1, firstly, because the atom is initially in its normal

state and is not radiating, and secondly, because the field is complex.

With
<l>
and a given by § 1, equations (3) and (4), we see from Chap.

XIV, eq. (29.2), that the differential cross-section for scattering in a

solid angle dco is

1/(0) |2 do) = Vf
J

g(r')[— e^i— e;)i(o . a)]xi(r') dr' dw, (8)

where 5 is the complex conjugate of the wave function for an electron

moving in the direction py, normahzed so that there is one particle per

unit volume (i.e. for Schr5dinger electrons g = exp(—-277ip^.r7A), for

Dirac, cf. Chap. IV, eq. 12).

In the non-relativistic theory one must use an antisymmetrical wave

function to describe a collision between an electron and a hydrogen

atom. In the relativistic theory discussed here no wave function for

the whole system appears, but we can take account of the antisymmetry

in the same way as in § 1. Thus in equation (8) we have obtained an

expression \f{6)\^da) for the probability that an electron will be

scattered into the solid angle do). If in (7) we replace ipf{r) by a hyper-

bolic wave function describing an electron ejected with momentum pp
and 5 iR (S) by the wave function ^^(r) of an electron captured in

the state / in the atom, we obtain the probability \g{6)\^ dco that the

incident electron is captured, and the atomic electron ejected. In the

non-relativistic theory, when one takes account of the antisymmetry,

the probability for scattering into the solid angle do) is

i\m-9m^dw, (
9
)

t In the case of § 1 there is no final state of energy Thus the presence
of the conjugate term makes no difference to the number of electrons ejected.
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where the summation is over all possible initial and final directions of

the spin (cf. Chap. V, § 6). We may assume that, in the relativistic

theory also, the scattering is given by the formula (9).

Formulae for the stopping-power and primary ionization may be

obtained by evaluating integrals of the type (8), and summing over all

final states. (For results see below.) We must, however, remark here

that all important contributions to the primary ionization are made by

collisions in which the incident electron changes its momentum by a

small amount only. Under these conditions the method of impact

parameters is applicable. Williamsf has shown that all the results

given below may be deduced by this method, the incident electron

being treated as a moving centre of force, with the field demanded by

the ‘classicaF relativity theory. We conclude that an experimental test

of these formulae does not provide a test of the relativistic quantum

theory of the interaction of two electrons. This theory only provides

formulae which can be obtained in no other way, when applied to prob-

lems where the incident particle loses a large proportion of its energy.

The formulae for the stopping-power and cross-section for ionization

are,:}: in the notation of Chap. XI, §§ 3.3 and 4.2,

dx

Qii =

27T€^N 2mv^

mv^

OnrZ,rd

mv^ \Ej
log

2mv^

By comparison with the corresponding formulae (68) and (50) of

Chapter XI we see that the chief difference between these relativistic

formulae and the non-relativistic formula is the presence in the relati-

vistic formulae of a term —log{l~v^/c^). This term has the effect of

producing a minimum in dTjdx and at sufficiently high velocities.

Otherwise there is no appreciable modification. Thus for electrons in

air Bethe and Fermi give the following values of dTjdx:

Initial energy in volts 10^ 10® 10^ 10® 10® 10^®

dTjdx 3*67 1-69 1-95 2*47 2-99 3-48

Experimental verification of the formulae by use of cosmic ray

electrons was delayed by the failure at first to distinguish between

the meson and electron components of the radiation. The more recent

t Proc. Hoy. Soc. 139 (1933), 163.

j These formiilae have been derived by Bethe and Fermi, Zeits.f. Physik, 77 (1932),

296, using MelleFs method, and by E. J. Williams, loc. cit., using the method of impact
parameters.
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experiments of Corson and Brodef and of HazenJ have, however,

provided confirmation.

It is important to remember, moreover, that for these high-energy

particles a large part of the energy transfer occurs in very distant

collisions. The perturbing influence of neighbouring atoms can then no

longer be disregarded. This effect, first pointed out by Fermi, § reduces

the energy loss in condensed materials so that, after passing through a

minimum M.e.V., dTjdx increases to a finite maximum and not indefi-

nitely. For further details the reader is referred to the original papers.
||

3. Collision between two free electrons

The first apphcatioii of the method of § 2 to a collision problem was

made by Mollerjff who apphed it to the coUision between two free

particles. Since the effect of one electron on the other is treated as

a first-order perturbation, the results are of an accuracy equal to that

of the first approximation in Born's method. With an inverse square

law field, V — the successive approximations in Born’s method

correspond to an expansiontJ in powers of the constant 27T€^lhv, A
relativistic correction is only of interest if v c, and thus Holler’s

formula neglects 27T€^lhc in comparison with unity. An attempt to find a

more accurate formula cannot be made without taking into account the

loss of energy by radiation, since if a particle moving with velocity com-

parable with c is scattered through a large angle, the probability that it

will lose energy in the form ofradiation is of order ofmagnitude§§ 2iT€.^jhc,

Holler’s formula|||| for the cross-section for scattering between angles

0, d-\-dd is

where x = cos

^

l-x2

_ 2-(y+3)8in^g

2+(y— l)8in20’

t Phya. liev, 53 (1938), 773; Brode, Rev, Mod, Phys. 11 (1939), 222.

i Phya, Rev. 67 (1945), 269. § Ibid. 56 (1939), 1242.

II
Fenni, loc. cit. ; Phys. Rev, 57 (1940), 485; Halpom aiid Hall, ibid. p. 459, and 73

(1948), 477; Hayward, ibid. 72 (1947), 937; Hereford, 74 (1948), 574.

tt Zeita.f. Physik, 70 (1931), 786; Ann. der Phya. 14 (1932), 531.

tt If we take for our unit of length hl27nnv, Schrodiiiger’s equation for an electron

in the inverse square law field becomes

= 0 .

Dirac’s second-order equation takes a similar form (cf. Mott, Proc. Roy. Soc. A, 124
(1931), 425).

§§ Cf. § 9. If the two colliding particles are of equal mass and charge, the dipole

moment vanishes and the probabihty of radiation is much less,

nil Ann. der Phya. 14 (1932), 568, eq. (74).
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is the angle of scattering referred to axes with respect to which the

centre of gravity of the two electrons is at rest. It is interesting that

if one applies the method of the preceding sections, using the second-

order relativistic wave equation without the spin terms, one obtains

the same formula without the term

which may thus be considered as the contribution made by the spin.

For small angles Holler’s formula gives for the effective cross-section

for loss of energy between Q, Q-\~dQ

2776^ (IQ

a result predicted by Bohrt in 1913.

Experiments have been carried out by ChampionJ to test the formula

(10). Two hundred and fifty forked jS-ray tracks have been photographed

in an expansion chamber, the initial values of vjc lying between 0*82

and 0*92. The agreement with the theoretical formula is good, as shown

below.

I

No. scattered

Angle Ohs. Moiler

30-max. 10 13

20-30 26 30

10-20 214 230

It should, however, be noticed that the ‘spin’ term (11) makes only a

very small contribution for angles less than 30°.

On the other hand, Williams and Terroux§ and Williams|l have pro-

duced evidence which shows that, for v/c ~ 0*9 and Q ~ 10,000 volts,

the energy loss is about twice as great as that given by formula (12).

4. Pair production by fast particles

In Chap. IV, § 5, Dirac’s theory of the positron and its consequences,

as far as the creation and annihilation of electron-positron pairs are

concerned, was discussed. A fast particle with energy > 2/^0^, passing

a nucleus or other scatterer, may excite an electron from one of the

states of negative mass to a state in which the mass is positive. This

t Phil Mag. 25 (1913), 10; 30 (1916), 68.

t Proc. Boy. Soc. A, 137 (1932), 688.

11
Ibid. 130 (1930), 328.

3695.67 £

§ Ibid. 126 (1929), 289.
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process, which will appear as the creation of an electron and a positron

(the hole in the distribution of electrons of negative mass), is essentially

similar to an inelastic collision in which the initial state of the ‘bound’

electron is one of the negative mass continuum. Formula (8) may there-

fore be used to give the cross-section with the functions 0^(r) of (7)

representing respectively an electron in the initial negative mass state

and in the final state of positive mass. If p_, are the momenta of the

created positron and electron, then is a Dirac wave function for an

electron of momentum — p+ and kinetic energy — in the

field of the scattering nucleus, ^^the corresponding function for momen-
tum p_ and kinetic energy This will be valid provided the

interaction of the incident particle and the electron with each other is

much weaker than either with the scatterer.

To obtain a finite cross-section, the functions 5(r'), Xi(r'), cannot

be aU represented by plane waves. Momentum can only be conserved

if there is some interchange with the scattering nucleus, i.e. some

disturbance of the waves by the scattering field. In the first non-

vanishing approximation the functions may be represented by the

second Born approximation, i.e. in the non-relativistic limit by

g(r) = exp{-ip/.r/S}+?^ Jexpj-i(p^|r-r'|+ p/.r')ji^rfr',

(13)

F(r') being the potential energy due to the scatterer, with similar

expressions for the other functions.

The detailed evaluation of the cross-section involves very lengthy

algebra and has not been carried through in general. The most detailed

calculations are due to Bhabha.f For creation, by collision with a bare

nucleus (charge Ze), of electrons so fast that y = (1—^-^)“^ ^ 1, the

cross-section is given approximately by

28
(14)

where a is a quantity of order unity. Table I gives some values for Q
and also for the ratio QjQy, where Qy is the cross-section for pair

production by y-rays of the same quantum energy as the total energy

of the electron.f Provided y ^ 1 the values given hold also for creation

by protons with the same value of y as the electrons.

t Proc, Roy. Soc. A, 152 (1936), 569.

t Heitler, The Theory of RadicUioriy 2nd edition, Oxford (1946), Chap. IV.
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TABLE I

Cross-Sections Q in 10~^^ cm for the Creation of Pairs in Lead

by Fast Particles

y 10 50
1

100 500 1,000

Particle \ ^
I Electrons 5 25 50 250 500

1
Rrotons

M.e.V. )
8,500 46,000 93,000 470,000 940,000

Q Oil 0*56 0*9 2 2 2*9

QIQy 0*004 0*01 0*02 0*05 0*06

Qy is the cross-section for creation of pairs by y-rays of the same quantum
energy as the electrons.

5. Radiationless annihilation of positrons

A iiositron colliding with an atom presents a vacant state into which

an atomic electron may fall, releasing energy > 2mc^- This may either

be radiated or given to a second electron which then leaves the atom

with high kinetic energy. In this way a positron will be annihilated

without emitting radiation.

The process is essentially an Auger effect and (6) may be applied,

the function Xf being the Dirac wave function for an electron of momen-
tum ~p+ and energy p^ being the momentum of the

positron.

The probability of this process is rather low (in lead about one in 10^

of all positrons would be annihilated in this way). A detailed discussion

is given in a paper by Massey and Burhop.*)*

6. Collision of a positron and a free electron

If exchange is neglected Moller’s formula (10) reduces to

\mv^l
fj ({1-xr

(l-x).
(y—

{l-x)^\. (15)

At first sight one would expect this formula to be valid for the collision

of positrons with electrons as, being different particles, there should be

no exchange effects. It was pointed out by Bhabha,J however, that

according to the hole theory of the positron an exchange effect would

be expected. This arises in the following way.

Initially the electron occupies a positive mass state a^ and the positron

represents a vacant negative mass state 6^. After the collision the

corresponding states are Oy, bf. The collision can be regarded then as

an impact between the electron 1 in state with an electron 2, ofnegative

t Proc. Roy, Soc, A. 167 (1938), 53. t Ibid. A, 154 (1936), 195.

3S96.67 B b2
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mass, in the state bf as a result of which, either electron 1 jumps to

and 2 to or 2 to and 1 to b^. The exchange effect is due to the

latter possibility. Alternatively it can be regarded as due to the mutual

annihilation of the colliding electron and positron, followed by their

re-creation in a different pair of states.

As a result of this effect the formula (15) is modified to give

(2y2+4y+l)
1

1—

X

+i(y-i)*x

1 (y-l)*
=*]• (

16
)

Unlike the collision oftwo electrons, in this case the effect ofexchange

vanishes in the non-relativistic limit y -> 1, as would be expected from

its nature.

The difference between (15) and (16) is most marked at large scattering

angles, but is never greater than a factor of 2. Quite accurate experi-

ments will be necessary to confirm the existence of the exchange effect,

although preliminary measurements have been made by Ho Zah-Wei.f

7. Collision of a meson with an electron

The collision of a fast meson with an electron can be discussed by

means of the formula (6), the potentials
<f>
and a being those correspond-

ing to the initial and final states of the meson. The result depends on

the spin of the meson, as a considerable contribution can come from the

interaction of this spin with the orbital motion and with the electron

spin.

For practical purposes it is convenient to give the cross-section

S{Q) dQ for energy loss between Q and Q+dQ by the meson, Q being

measured in units of /xc^, where yb is the meson mass. We then findj

where
-|;+e(0)], (.7)

m = 0, for mesons with spin 0, (18)

0^— —jr , for mesons with spin (19)

_JV+l)oi/ 1 for mesons , ,

6(y2— 1
)

\y*— 1 QnJ^ 6(y*— 1)’ with spin 1.

t Comptes Bend. 222 (1946), 1168.

i Maeeey and Corben, Proc. Comb. Phil. Soc. 35 (1939), 463; Corben and Schwinger,
Phys. Rev. 58 (1940), 953; Bhabha, Proc. Roy. Soc. A, 164 (1938), 267.
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In these formulae a = m//Lt and the maximum value of Q, is

2a(/-l)
l-\-2ay-j-y^

The most interesting case is that of the meson of spin 1 ,
first discussed

by Massey and Corben.f In the extreme relativistic limit, when aQ >1,
S[Q) is times as large for vector mesons (spin 1) as for mesons with

spin This would result in a considerable excess of fast projected

electrons due to meson impact at very high energies. The production

of showers by the meson (penetrating) component of cosmic rays is

probably due in the first instance to production, either of such electrons,

or of high-energy quanta by ‘bremstrahlung’ from the meson in passing

a nucleus. At first the latter effect was neglected and it was then foundj

that the probability of production by the penetrating component was

in agreement with the observations, if formula (20) was used to give the

rate ofproduction of fast knock-on electrons. This was taken to indicate

that mesons have spin 1, but it was found§ that the neglected effect

was more important than the one considered and it now seems that the

evidence,
II
though far from definite, favours the assignment of a spin

less than unity to the mesons observed near sea-level.

An important question arises also as to whether Moller’s method

breaks down when the spin effects are so large. To investigate this

point it is natural to consider the scattering of vector mesons by a

static Coulomb field without resoi-t to approximation.

8. Scattering of vector mesons by a static field

For the scattering by a static Coulomb field of charge Ze, Bom’s
approximation gives a result which may be obtained from the case

discussed in the preceding section by letting a -> 0. The differential

cross-section is given by

+ (
21

)

This may be compared with the corresponding result (Chap. IV, § 4.2)

t Loc. cit.

t Bhabha, Carmichael, and Chou, Proc. Ind, Acad. Sci. 10 (1939), 221; Carmichael
and Chou, Nature^ 144 (1939), 325.

§ Christy and Kusaka, Phya. Rev. 59 (1941), 414 ; Booth and Wilson, Proc. Roy. Soc.

A, 175 (1940), 483.

li
Christy and Kusaka, loc. cit.; Kusaka, Phys. Rev. 64 (1943), 256; Majumdar, ibid.

6 (1944), 200.
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for a particle of spin J in which the expression in brackets is replaced by

1

/
Whereas in the latter case the spin contributes a term which remains

finite in the limit v ->c, the effect of spin, for a vector or pseudo-vector

meson, increases without limit as c.

Doubt as to the validity of this result is enhanced by consideration of

the scattering problem without use of the Born approximation. This

was first done by Corben and Schwingerf and by TammJ using the

Proca equations for the vector meson. It is possible to separate the

radial and angular coordinates. For a given total angular momentum
the radial motion of the mesons with j — I, where {l{l+l)}^h

is the orbital angular momentum, is described by the usual Klein-

Gordon equation for a particle of spin 0 and mass jx. For mesons with

^ = i±l the radial motion is coupled as two second-order simultaneous

equations. It is found then that, for a Coulomb field, these latter

equations include an essential singularity at the origin which prevents

one from obtaining the complete set of proper solutions necessary for

the scattering problem. It is not yet clear to what extent the scattering

does depend on the way the singularity is removed. Until this is decided

the validity of the formula (21) and also of (20) must remain in doubt.

A detailed formal treatment of the scattering of vector mesons by a

static field of potential V[r) has been given by Gunn,§ in terms of the

asymptotic phases of the different partial waves, on the assumption

that proper solutions exist. The expressions obtained are natural

generalizations of those given in Chap. V, § 4, for the scattering of

Dirac electrons.

9, Derivation of radiation formulae by Born’s collision method

We show now how the method described in Chap. VIII, §§ 3 and 4,

which has been appHed to various phenomena involving collisions

between systems in which no radiation is emitted, may also be employed

to deal with radiative phenomena. In general it is less convenient for

this purpose than methods such as those outlined in Chapter XIV, but

it does, of course, lead to equivalent final formulae.

The possibility that a particle may emit radiation in a collision can

be regarded formally as due to a coupling between the particle and the

radiation field. This field may be represented by a distribution of

t Phys. Rev. 58 (1940), 963. t Ibid. p. 952.

§ Proc. Roy, JSoc, A, 193 (1948), 569; see also Bartlett, Phys. Rev, 72 (1947), 219.
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harmonic oscillators quantized in the usual way. Radiation of a quanta

of frequency v is then due to an excitation of an oscillator with that

frequency from the ground to the first excited state, due to the coupling.

We consider the radiation within an enclosure of large volume F.

The number of quanta with frequency between v and v+dv is then

given by „

dN = ^Vv‘dv. (22)

The vector potential associated with radiation of firequency Vg can be

written \

A,(r,<) = ag«,(<)sin— (23)

where a^, are two perpendicular unit vectors and is a phase angle.

The time-variable amplitude factor Ug(t) may be derived from a Hamil-

87tc*\J

tonianf

where

This may be used as a basis for quantization, the Hamiltonian for

the radiation having the form

s

The corresponding wave equation

= 0 (26)

will have the proper solutions

(27)

where ^he proper solution of the harmonic oscillator equation

with frequency Vg and with the energy

A state represented by the function (27) is thus one in which there are

present quanta of frequency

In the presence of matter we may write the complete Hamiltonian

in the form H = (29)

where //g is the Hamiltonian for the material particles, including the

static interactions between them. represents the interaction between

the matter and radiation. To obtain it we note that, under non-

relativistic conditions, if is the momentum, the charge, and the

t Fermi, Rev. Mod. Phya. 4 (1932), 131.
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mass of the tth particle, the interaction is given by

A .

m.c
***+ 2m?c*

We may therefore write

a,.p<g«8iny,+

where

i 8 r ^

y. = ^*K-r)+)e«. (32)

Let us now consider, by way of illustration, the probability that a

particle of mass m should, when scattered by a static potential F(r),

emit a quantum of radiation.

We denote by
<f>-,a,p; v) dadOdv (33)

the probability that the particle will be scattered in the direction 6, (f>

into the solid angle dcu after emitting a light quantum of frequency

between v and v-\~dv with its electric vector lying in the solid angle dO,

and in the direction a, jS.

The SchrOdinger equation may be written

We may now employ immediately formula (32) of Chapter VII with the

following substitutions:

For F(r, r„, r^), V{r)-H^(q„ r, p).

^0 .
(corresponding to %, n„...

quanta of frequency Vgv-ji'sv- initially present).

0n. <f>nMi)<f>n,{<l2)-4n.+i{9s)-> (corresponding to

quanta of frequency vj, v„... finally

present).

Tl^s- (35)
8

The functions F^, will satisfy the equations
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since, in this case

377

Voo = f
[V(r)-Ba(g'^,r,

= V(r),

= Kn- (37)

Also, using the well-known result for the wave functions of the oscilla-

tor, that „ // I lUM
/ -) • (

3®)
— 00 ' '

we have

Vonir) = /
[V(r)-H,(q,,r,p)]^Jq,)4,tJq,)dq,,

i(Wg+jjAU^/^U
\ Stt^v I OT \ F /

sin y^ag. grad. (39)

The contribution to <x,P; v) from each oscillator of frequency

Vg may now be written down. As there are STtVv\dvJc^ such oscillators

we have, taking —
0,

I{$,4>;ot,p;v)dv

=S J
5n(>-',^-0)a.smy,.gradii(r',0') dr' V, (40)

A indicating that an average over the phases jS,, is to be taken.

To reduce this to a more familiar form, we note first that the region

over which the product of Fq and is likely to contribute appreciably

to the integral will not be greater than the initial or final wave-length

of the particle. This will normally be much shorter than the wave-

length of the emitted radiation, so that may be taken as constant

over the region of importance. The average over the phases then

simply involves multiplication by | and removal of the term siny^.

If we assume that the product J?5, 5^ vanishes faster than r~2 over the

infinite sphere, we have, integrating by parts.

J
g„gradJ?'o dr = ^ j (5„ grad grad 5„) dr,

= i/r(g:„V*Ji-^’oV*gr„)dr. (41)

Using the equations (36) for J?), and we finally have, since

ifc®

—

k% = %‘tT'hnvjh,

J
<?» grad dr —

J
r5„ Fq dr. (42)
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In the scattering problem as specified, the product jPo5n

vanish faster than r-^ over the infinite sphere, but the same procedure

may be adopted if we introduce a convergence factor into the

integrand and make A tend to zero after integration.

We find then

I{d,(f)\cx,P\v) dv

,.hm r T'e-^r'^Jir\^-Q)F,{r',d')dT^
A-h-o J

dv, (43)

If we integrate over all directions of emission and of polarization of the

emitted quantum, we obtain

where

1(6, (f>;v) dv =

My = lim

M,

dv,

' x'

J z'

(44)

(45)

This is the usual formula, used, for example, by Sommerfeld, f Scherzer,t

and Maue§ in their investigation of the intensity of the continuous

X-ray spectrum.

If the incident and scattered particles are fast, but not so fast that

relativistic effects need be included, then Born’s method (Chap. VII,

§ 1) may be used to give, in the second approximation,

Fa ~ exp(ii!;no.r)—^ J
F(r')^^^|^l^^^exp(i/cz') dF

,

(46)

with a similar expression for 5n with k, Dq replaced by n. The
second approximation must be included in order to give a finite result.

A similar procedure may be employed for other radiative problems.

The process can be classified as of first, second, or higher order according

as the first, second, or higher terms in the successive Born approxi-

mations must be included in order to obtain a finite result. In this way
it may be shown that the method is completely equivalent to that

normally used, which is based on the Dirac method of variation of

parameters for dealing with time-dependent perturbations. A complete

account of this method and its applications has been given by Heitler,

to whose book|| the reader is referred for further information.

t Ann. der Phya. 11 (1931), 267.

j Ibid. 13 (1932), 137.

II
The Theory oj Radiation, 2nd edition, Oxford (1945).

§ Ibid. p. 161.
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10. Influence of radiative forces on nuclear scattering

If we apply (44), (45), and (46) to scattering of an electron bj?' a

Coulomb field (F(r) = —Ze^jr) the differential cross-section for scatter-

ing of the electron into a given element dco of solid angle with emission

of a quantum of frequency between v and is given byf

where IJd, 6) = -—— cosec^ iO

is the differential cross-section for elastic scattering, p and p' are the

initial and final momenta of the electron.

It will be seen that a logarithmic divergence of the cross-section (47)

appears if we integrate to zero frequency. This difficulty was first

analysed by Bloch and Nordsieck.J They pointed out that, for low

frequencies, the perturbation treatment outlined in the preceding

section is quite invalid. In that treatment the coupling between the

electron and the radiation is assumed small. It represents an expansion

6^
in powers of— -T,log

itO (3 '
where E is the electron energy, which clearly

breaks down for small v. For such cases Bloch and Nordsieck developed

a method in which the coupling between electron and radiation field is

not treated as small but the scattering field is treated as a perturba-

tion. In this treatment, which was extended by Pauli and Fierz,§ the

logarithmic divergence for small v no longer appears but in its place a

divergence is introduced in the limit of very high frequencies.

The origin of this divergence has been investigated by Braunbek

and Weinmann.il The next approximation to that which gives (47)

leads to a correction to the elastic scattering due to the radiation field.

This can be regarded as due to the emission and reabsorption of virtual

quanta by the electron in the presence of the nucleus. The correction

to /o(<9, (f>)
due to virtual quanta with frequency between v and v-{-dv is

found to be
if!
Zhe

-pP dv
(48)

In the limit of zero frequency this cancels the divergence in (47). On
the other hand, as the quanta involved are virtual, there is no upper

t Mott, Proc> Camb. Phil. Soc. 27 (1931), 256.

t Phys. Bev. 52 (1937), 54. § Nuovo dm. 15 (1938), 167.

II
Zeits. Phys. 110 (1938), 360.
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limit to V and the correction diverges as v -> oo. It might be objected

that relativistic considerations would modify (48) at high frequencies

and it has indeed been shown by Dancofff that, with a relativistic theory,

the divergence is removed for particles of spin zero. This result has

been extended to electrons by LewisJ who showed that the apparently

divergent terms found by Dancoff for this case are due to the infinite

electromagnetic mass, and can be eliminated by a mass renormalization.

The correction S/q to the elastic cross-section is found to be negligibly

small, i.e. for non-relativistic conditions

4€2 |p'-p|2

Zhc mV ^ E ’

where k is 0(1) and E is the initial kinetic energy of the electron.

Developments in quantum electrodynamics by Schwinger§ have yielded

further cases in which finite reactive effects of radiation interaction can

be separated from divergent contributions associated with infinite self-

energy.

t Phya. Rev. 55 (1939), 959. J Lewis, Phya. Rev. 73 (1948), 173.

§ Schwinger. PAys. Rev. 74(1948), 1439.
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Absomtion : of neutrons by nuclei, 309 ;

of
He^ in helium, 290 ; of positive ions in

gases, 282 ; of sound in gases, 294.

Absorption potential, 12, 172, 222.

Accommodation coefficient, 269, 294.
Activated complex, 174.

Activation energy, 269.

a-particles: scattering of, anomalous, 321

;

by helium, 96 ; excitation of litliium by,

291; multiple scattering of, 278; re-

sonance disintegration by, 318.

Aluminium : absence of polarization in

double scattering from, 85 ;
collision

cross-section of, for neutrons, 315; mul-
tiple scattering of a-particles in, 278;
range of, in hydrogen and helium, 272;
scattering of fast electrons by, 83.

Angular momentum; quantization of, in

collision problems, 25.

Anomalous scattering: of a-i)articles, 321 ;

of protons, 303.

Argon : (jollisions of protons in, 289 ; scat-

tering of electrons by, 83, 201, 202, 203,

208, 210, 211.

Atomic scattering factor, 187, 188, 339.

Auger effect, 350.

Beryllium: scattering of fast electrons by,

83.

Beryllium 8 nucleus, 316; level width of,

317, 321, 324.

Born’s approximation in collision theory:
theory for elastic collisions, 116; relati-

vistic correction, 119; range of validity

of, 124, 191 ; application to scattering in

hydrogen and helium, 184; in heavy
gases, 187; multiple scattering, 196;
theory for all types of collision, 136;
relation to perturbed stationary state

method, 156, 291 ; application to inelas-

tic scattering of electrons, 224 et soq.

;

summary of region of validity for elec-

tron collisions with atoms, 264 ; applica-
tion to fast collisions ofmassive particles,

270 ; to energy loss for slow ions, 272 ; to
high energy neutron-proton collisions,

301 ; to collisions of neutrons with mole-
cules, 328; to magnetic scattering of
neutrons, 336; to relativistic two-body
problem, 362 ; to collisions between two
electrons, 368; to scattering of vector
mesons by a Coulomb field, 373.

Boron; disintegration of, by neutrons,
324.

Bragg reflection: of neutrons, 311, 335.

Cadmium: absorption of neutrons by, 311.
Capture: of electrons, from atoms, by

fission fragments, 275 ; by positive ions,

267, 273, 281, 282, 287 ; of neutrons, by
nuclei, 308, 324; by uranium, 346; of

protons, by nuclei, 315 ;
of a-particles by

nuclei, 318.

Classical mechanics: scattering formula
and connexion with quantum theory,

120; range of validity of, 124.

Cobalt: absorjjtion and scattering of neu-
trons by, 312, 314.

Conservation: of charge, 12, 14; theorems,
133, 346.

Copper: absorption of neutrons by, 312;
scattering, of fast electrons, by, 83

;

multiple, of a-particles, by, 278.

Cosmic ray showers, 373.

Crossing: of potential energy curves, 284.
Current vector, 10.

Deuterium: molecular, collisions of slow
neutrons with, 334.

Deuterons : binding energy of, 297 ;
quadru-

polo moment of, 301 ; scattering of
neutrons and protons 0}% 305 ;

singlet

state of, 297, 334; triplet state of, 297.

Diffraction : of hydrogen and helium from
crystals, 268; of inelastically scattered
electrons by atoms, 257 ; of neutrons by
crystals, 311, 335; of X-rays by mole-
cules, 335.

Diffusion: quantum theory of, 279.

Disintegration: of nuclei, by a-particles,

218; by deuterons, 344; by neutrons,

324; by protons, 315.
Dispersion formula for collision cross-

sections: one-body case, 41; wdth
Coulomb field, 55 ;

many-body case,

162 et seq. ; applications, to neutron
collisions, 309 ;

to proton collisions, 315 ;

to a-particle collisions, 318; to elastic

scattering of nucleons, 319; to nuclear
fission, 345.

Dispersion of sound, 269, 294.

Doppler broadening of nuclear levels, 310.

Effective cross-section for scattering

:

definition of, 19.

Einstein A coefficient, 363.

Einstein B coefficient, 358.

Einstein-Bose statistics; influence on scat-

tering of a-particles in helium, 101

;

influence on gas-kinetic cross-section

and viscosity of helium, 280.

Electrons : wave mechanics ofsteady beams
of, 2; beam of, in field free space, 6;
wave equation for, in slowly varying
field, 9 ; magnetic moment of, 61

;

relativistic wave equation for, 66

;

polarization of, 70 ; by double scattering,

76 ; in a Coulomb field, 826 ; scattering
by a centre of force, 74; by a Coulomb
field, 78; by electrons, 104, 368; elastic

scattering of, by atoms, in general, 118,

183, 204; relativistic correction, 119; by
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Electrons (eont.):

hydrogen and helium, 184; by other
atoms, 187; effect of exchange in, 216;
effect of polarization in, 220; iniiltiple

scattering of, 193 ; inelastic scattering of,

general theory, 136, 140; by atoms, 222
et seq. ; analysis of effects contributing
to scattering of, by atoms, 265 ; capture
of, by positive ions, 273, 288 ; by fission

fragments, 275 ; magnetic interaction of,

with neutrons, 336; stopping power of
matter for, 248, 367 ; collisions of, with
positrons, 371; with mesons, 372; with
emission of radiation, 379.

Energy-level spacing in nuclei, 307, 315,
319.

Exchange: of electrons in collisions, 140,

214, 257.

Exchange forces between nucleons, 298.
Excitation: of continuous spectrum levels

of atoms, by electrons, 232 ; of discrete

optical levels, by electrons, 241 et seq.

;

by ions, 271 ; of inner molecular motion,
by atoms, 269, 292, 326; by neutrons,
330; of X-rays, by electrons, 243; by
ions, 271 ;

ofsodium, by excited mercury,
282.

Exclusion principle, effect on scattering
formulae, 102, 143.

Fermi-Thomas field of atoms: applica-
tion, to elastic scattering of electrons,

188, 213; to inelastic scattering of elec-

trons, 240; to multiple scattering of
electrons, 196; to stopping of fission

fragments, 277.

Ferromagnets: transmission of neutrons
through, 337.

Fission: of nuclei, 344.

Fission fragments: stopping power of
matter for, 275.

Fluorine: capture of protons by, 317.

Gold : single scattering of fast electrons by,

83; polarization on double scattering
from, 84; ionization of L shells of, 244;
multiple scattering of a-particles in, 278.

Helium: scattering of slow a-particles by,
101 ; scattering of fast a-particles by,
321 ; scattering of electrons by, 184, 191,

212, 222 ; effect of exchange in electron
scattering by, 216 ;

effect of polarization
in electron scattering by, 221 ; excitation
of discrete levels of, 227, 260; impact
excitation of, 242, 256; ionization of,

233, 242; total electron collision cross-

section of, 242 ; diffraction of, from
crystals, 268; ranges of a-particles in,

271 ; viscosity of, 281 ; elastic collisions

of protons in, 289 ; absorption of He*^ in,

290 ; excitation of, by protons, 290 ; de-
activation of nitrogen vibration by, 294

;

resonance effects in scattering of neu-
trons and protons by, 323.

Hydrogen: atomic, scattering of slow pro-

tons by, 104; collisions of electrons with,

136, 184, 191, 222; effect of exchange in

electron scattering by, 215; effect of
polarization in electron scattering by,

215; excitation of discrete levels of, 227,

290 ; inelastic scattering of electrons in,

237 ; stopping power of, for electrons,

250; energy loss of electron.s in, 254;
range of fast electrons in, 254 ; range of

a-particles in, 271.

Hych’ogen: molecular, activation of com-
plex molecules by, 294 ;

diffraction of,

by crystals, 268 ; scattering of slow
neutrons by, 331.

Hyperfine structure, 93.

Hypergeometric function, 49.

Impact parameter: definition of, 25;
method of, in calculation of stopping

power, 252.

Inv’^erse cube law field : scattering by, 40

;

as an approximation to interatomic

forces, 284.

Inverse square law field: scattering by, 45,

126; relativistic effects, for electrons,

78; for positrons, 87; effects due to

exclusion principle, 101 ;
scattering of

mesons by, 373.

Iodine: capture of slow neutrons by, 312.

Ionization: of helium by electrons, 233,

242, 245 ;
of hydrogen by electrons, 233,

245 ; of iimer shells by electrons, 243 ; of

atoms by fast ions, 271; relativistic

effects, 367.

Krypton: scattering of electrons by, 212,

213.

Lead: scattering of fast electrons by, 83;
creation of pairs in, 371.

Liquid drop nuclear model, 307.

Lithium: excitation of, by a-particlos, 291 ;

capture of protons by, 316; scattering

length of, 335.

Magnetic moment; of atom, 57 ;
according

to Dirac’s equation, 72 ;
of electron, 61

;

of neutron, 336.

Mercury: scattering of fast electrons by,

82, 83 ; of fast positrons by, 87 ; of slow
electrons by, 213; excitation of, by
electrons, 262 ; by Na^, 292

;
quenching

of resonance radiation of, 282; absorp-
tion of neutrons by, 312.

Mesons: in theory of nuclear forces, 301;
collisions of, with electrons, 373; scat-

tering of, by a Coulomb field, 373.

Method: of partial cross-sections, 24; ap-
plication to electron scattering by atoms,
204; to gas kinetic collisions, 279; to
collisions ofpositive ions, 289 ; to proton-
proton collisions, 302 ; to neutron-
proton collisions, 297 ; ofdistorted waves,
144, 293, 376; of perturbed stationary
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Method {cont .)

:

state wave functions, 153, 272, 290; of
collision complex, 157, 306 et seq.

Mobility of ions in gases, 268.

Modulated neutron source, 311.

Mutual neutralization of positive and
negative ions, 288,

Neutrons: collisions of, with protons, 297

;

at high energies, 301 ; spin dependence
of interaction of, with protons, 298

;

non-central interaction of, with protons,

301 ; scattering by deutorons, 305 ; slow,
resonance phenomena for, 308 et seq.

;

radiative capture of, 308 ;
mono-

chromatic beams of, 311; velocity

selector for, 311 ; scattering by liolium,

323; by molecular hydrogen, 331; by
molecular deuteriimi, 334; by ferro-

magnets, 337 ;
excitation of molecular

vibration by, 329 ; in fission, 347, 348.

Nickel: ionization of K shell of, by elec-

trons, 244.
Nitrogen; scattering of a-particlos by, 84;

deactivation of vibration of, by heliiun,

294.

One-lbvel dispersion formula, 162 ; relation

to o})tical absorption, 162; for elastic

scattering, 163; with unrestricted angu-
lar momentum, 1 64 ; application to slow
neutron collisions, 309 ; to radiative
capture of protons, 315; to disintegra-

tion by a-particles, 319; to elastic scat-

tering of charged particles by light nuclei,

319; to disintegration of boron, 325;
to uranium fission, 347.

Orthohydrogen, 322 ; -deuterium, 333.

Oscillator strengths: generalized, 248.

Pair creation and annihilation, 87, 369.

Parahydrogen, 323; -deuterium, 333.
Penetrabihty of Coulomb potential bar-

rier, 54.

Phases, in scattering formulae: definition

of, 23 ; connexion with angular momen-
tum, 25; approximate expressions for, 28;
integral equations for, 110; Jeffreys’s ap-
proximation for, 127 ; variation method
for calculating, 129; complex, 134; cal-

culation of, for electron scattering, by
hydrogen and helium, 191; by argon,

208; by krypton, 213; by other atoms,
211; for collisions between a-particios,

321 ; for collisions between protons, 304.

Polarization: of atoms, effect on electron

scattering, 211, 220; of deuteron, 305;
of electrons, 64; by double scatWing,
76; of neutrons, 340.

Positive ions ; capture of electrons by, 267,

273, 281, 289; mobilities of, in gases,

268 ; stopping power of matter for, 270;
absorption of, by ‘Umladung’, 282;
passage of, through gases, 288; cross-

seotions of, in collisions with gas atoms,
289.

Positrons : 85 ; scattering of, by Coulomb
field, 87 ; creation and annihilation of,

87, 369, 37 1 ; collision of, with a free
electron, 371. Ijj

Potassium : excitation of, by hydrogen
atom impact, 292.

Potential barrier: scattering by, 36;
Coulomb, penetrability of, 54 ; effect

of, on dispersion formula, 65 ; effect of,

in nuclear reactions, 306, 316, 318, 319.
Potential hole: scattering by, 28; use of,

in analysis, of neutron-proton scatter-
ing, 300; of proton-proton scattering,

304.

Potential scattering, 163, 309, 319.

Protons: scattering of, in hydrogen, 104,

303; in helium and argon, 289; inter-

action of, with neutrons, 298 ; with pro-
tons, 304; scattering of, by deuterons,
305; by helium, 323; by lithium, 324;
radiative capture of, 315.

Pseudo-potential; 325 ; with spin coupling,

328 ; ap2
)lication of, 329.

Quenching: of resonance radiation, 268,
281.

Radiationless aimihilation of positrons,

371.

Radiative capture: of neutrons, 308; of
protons, 315.

Ramsauer-Townsend effect: 200; condi-
tion for existence of, 206.

Range : of fast electrons in hydrogen, 264

;

of a-particles in hydrogen, 271.

Rearrangement collisions, 140.

Relativistic wave equation : 66 ; correctioii;

to Rutherford scattering formula, 80 ; to

Born’s approximation for elastic scat-

tering of electrons by atoms, 119; to

formula for stopping power, 367.

Resonance: in inelastic collisions, 146; in

transfer of excitation, 282; in transfer

of vibration, 294; in nuclear collisions,

162, 296, 306, 308, 315-18.
Rigid sphere : scattering by, 38 ; model for

gas atoms, 280.

Rutherford scattering law : deduction
from wave mechanics, 47 ; correction for

relativity, 80; correction for identical

particles, 101, 103; correction for shield-

ing due to atomic electrons, 118, 196.

Scattering : by a centre of force, 1 9 ; sum-
mary of methods for calculating, 126;
by a potential hole, 28; by a uniform
potential barrier, 36 ; by an impenetrable
sphere, 38 ; by an inverse cube law field,

40 ; by a Coulomb field, 45 ; of electrons,

by a centre of force using Dirac’s equa-
tions, 74; by a Coulomb field using
Dirac’s equations, 78 ; by electrons, 104,

368; by atoms (elastic), 118, 183, 187,

200 et seq.; (inelastic), 224 et seq.;

(multiple), 193; by positrons, 371; by
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Scattering (cont.):

raisons, 372 ; with emission of radiation,

376; of a-particles, in helium, 102, 321;
in oxygen and carbon, 321 ; multiple,

278; of protons, in hydrogen, 104, 302;
by slow neutrons, 297 ; by high energy
neutrons, 301 ; by deuterofi#, 305 ; by
heliuilttr, ''”3; by lithium, 324; of neu-
trons, by iSoxiterons, 306 ;

by cadmium,
312; by cobalt and manganese, 314; by
helium, 323 ;

(elastic), effect of molecular
binding on, 325; by crystals, 305; by
magnetic moments of atoms, 336; of
positrons, by a Coulomb field, 78; of
mesons, by a Coulomb field, 373 ; elastic,

according to one-level dispersion for-

mula, 163 ; of charged particles by light

nuclei, 319; potential, 163, 309, 319;
length, 335.

Schrodinger’s equation, 2.

Self-consistent field: application to scat-

tering problems, 187, 211.

Silver : scattering of fast electrons by, 83

;

ionization of K shell of, 244; multiple
scattering of a-particles by, 278.

Sodium : excitation of, by mercury atoms,
282 ; by hydrogen atoms, 292.

Spin: of the electron, discussion for free

electron, 61 et seq. ;
influence on scatter-

ing formulae, 74 et seq., 102, 367, 368;
of the meson, 372.

Stem-Gerlach experiment, 57, 61.

Sticking probability : in method of collision

complex, 171, 344.

Stopping power: of matter for electrons,

180; of hydrogen for electrons, 248; of
complex atoms for electrons, 252

;

relativistic modifications, 367 ; modifica-
tions for condensed materials, 368; by
method of impact parameter, 252; for

positive ions, 270 ;
for fission fragments,

275.

Strong coupling: in collisions, 146 ; relation

to method of distorted waves, 149, 151.

Summary of methods for calculating

inelastic collision probabilities, 177.

Thomas-Fermi field, see Fermi-Thomas
field.

Tin: multiple scattering of a-particles in,

278.

Transfer of excitation, 267, 281 ; theory of,

284.

Transition state method, 173; application
to nuclear fission, 348.

Transmission, of neutrons through ferro-

magnets, 339.

Triton : binding energy of, 299.

*Umladimg’, 282.

Variation method: for calculating phase
shifts, 129.

Velocity of sound in gases, 269, 294.
Virial coefficient: second, of helium, 281.

Virtual levels, 34; of deuteron, 298, 333.
Viscosity of gases, 268; quantum theory

of, 278.

Wave equation: for a single electron, 3;
relativistic (Dirac), 66; (Klein-Gordon),
75; for two electrons, 89; for positron,
86 .

Wave functions ; definition of, 1 ; of a beam
of electrons, 5, 6.

Wave packets, 14.

Wentzel-Kramers-Brillouin method (re-

ferred to in text as Jeflreys’s method), 9

;

method of calculating phase shifts, 122,

127, 213; application, to calculation of
penetrability of a Coulomb potential
barrier, 54; to deduction of classical

scattering formula, 122; to inelastic

collisions, 151 ; to electron scattering by
atoms, 213.

Widths: of energy levels in collision com-
plex, 158, 162; variation of, with
velocity, 1 68 ; effect of Coulomb poten-
tial barrier on, 56; statistical formula
for, 171; formula for, by transition state

method, 176; for emission of radiation,

310, 315, 319; for fission, 347, 348; for

emission of neutrons, 310, 315, 319; for

emission of protons, 316; for emission
of a-particles, 319.

Xenon: scattering of fast electrons by, 83.

X-rays: excitation of, 243.
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